

Spectrum Sensing Techniques in Cognitive Radio Networks

Asst. Lect. Ahmed M. Jasim Computer Department - College of Engineering University of Diyala

March 20, 2017

Presentation Outline

- Introduction
- Dynamic Spectrum Access
- Cognitive Radio Network
- Cognitive radio network architecture
- Functionalities
- Spectrum Sensing
- Spectrum Sensing Techniques
- Challenges
- References

The electromagnetic spectrum

Spectrum is not actually a thing. It is simply the range of possible frequencies for electromagnetic radiation.

Spectrum scarcity

- Control structure of frequency allocation
 - Fixed amount of spectrum versus growing number of wireless applications/users
 - License holders maintain exclusive rights to their allocated spectrum
 - Purchased during a spectrum auction
 - Allocated via government decree, e.g., military, television
- Inefficient spectrum management

Static spectrum allocation regardless of its usage has led to scarcity of the spectrum. However, various research groups have shown that only 25% of the spectrum is well utilized in most of the spectrum bands, and the **spectrum scarcity** is the result of the inefficient spectrum management

Dynamic Spectrum Access

- Dynamic spectrum access methods are introduced as a solution to the problem of the scarcity of spectrum.
- We can categorize these methods based on the regulatory status:
- Dynamic licensing: The rights of using the spectrum band is given exclusively to a network operator for a specific period of time.
- Dynamic sharing: The rights of use the spectrum band is given to more than one network operator at the same time.
- There are two types of dynamic spectrum sharing, namely:
 - ✤ Horizontal sharing
 - Vertical sharing (Cognitive Radio)

Cognitive Radio Network

Cognitive radio Networks

- Cognitive radio network is a new paradigm that provides the capability to share or use the spectrum in an opportunistic manner.
- The cognitive radio networks (CRNs) is introduced to make use of parts of the spectrum, which are used sparingly and inefficiently, by operating unlicensed networks over the licensed spectrum bands.
- The licensed users are called primary users (PUs)
- The unlicensed users are called secondary users (SUs).

Concepts of a spectrum hole and opportunistic spectrum sharing

Cognitive radio network architecture

Components of CRN

The cognitive radio networks (CRNs) basically deploy in a primary network, therefore, their components have to serve the requirements of both licensed and unlicensed applications. The basic components of CRNs are:

- Primary network:
 - Primary users: Primary users have the license to operate in certain spectrum bands
 - Primary base station: Controls the access of primary users to spectrum
- > Secondary network:
 - Secondary users: Secondary users have no licensed bands assigned to them.
 - Secondary base-station: A fixed infrastructure component with cognitive radio capabilities and provides single hop connection to secondary users.
 - Spectrum broker: Scheduling server shares the spectrum resources between different cognitive radio networks.

Cognitive radio architecture

Functionalities of a CRN

- Spectrum sensing: The ability to detect the unused spectrum at any time and location and sharing it without harmful interference with other users.
- Spectrum management: Spectrum analysis and spectrum decision.
- Spectrum mobility: CR user shall vacate the spectrum in the presence of any primary user and move to next best available spectrum band.
- Spectrum sharing: CR network has to provide a fair and optimal spectrum allocation method among multiple CR users.

Cognitive Radio operation

Spectrum sensing

- Spectrum sensing imperative to the primary and secondary users.
- The secondary users have to abandon that channel when the primary users are detected.
- When the secondary users detect the presence of a primary user which is in actuality not there, it is referred to as false alarm.

Probability of false alarm must be minimum

Spectrum sensing techniques

- Information combined from multiple cognitive radio users for primary user detection.
- By cooperation, CR users can share their sensing data for making a combined decision more precise than the individual decisions.
- The main idea of cooperative sensing is to improve the sensing performance by abusing the spatial diversity in the observations of spatially located CR users.
- Cooperative spectrum sensing is classified into three categories based on how cooperating CR users share the sensing data in the network:
- Centralized.
- Distributed.
- Relay-assisted.

 In centralized cooperative sensing: Central Manager (BS or AP) collects CR sensing data and makes a decision on channel state, i.e. idle or busy.

Pros and Cons:

- High cost of transmission sensing data.
- If the Central Manager fails, the network will fail.

In Distributed (Decentralized) cooperative sensing: Each CR makes decision itself.

Pros and Cons:

- May take several iterations to reach the unanimous cooperative decision.
- Increased sensing reliability at the expense of increased communication overhead.

In relay-assisted cooperative sensing: It can be considered as multihop cooperative sensing. When the sensing results need to be forwarded by multiple hops to reach the intended receive node, all the intermediate hops are relays.

Pros and Cons:

The relay-assisted cooperative sensing incurs extra reporting delay because the sensing data is transmitted through multiple hops.

Transmitter Detection

- By this way, the sensing depends on signal received at secondary users from primary users.
- Examples of this approach are:
 - Energy detection
 - Matched filter (MF)

Energy Detection

- By this approach, we compare between the energy of radio resource and predefined threshold level.
- In case the energy level is above of threshold level, it's considered as occupied. While when the energy is less than of threshold level, it's considered as unoccupied.

$$\mathsf{BPF} \Rightarrow \int \mathsf{H}_1 \mathsf{H}_0$$

 H_0 :y(n) = w(n).....1 H_1 :y(n) = s(n) + w(n).....2 H_0 : The channel is idle, there is no PU signal H_1 : The channel is occupied, there is PU signalw(n): Noises(n): PU signaly(n): Measured signal

Matched Filter detection

- This method is easier to make a decision about the presence of the signal of primary users or not.
- In this method, the signal passes through a filter Designed specifically to maximize the useful signal and minimize the noise at the same time.
- Therefore, in the case of presence the signal of primary user, it will be a large difference between the useful signal and noise.
- While in the case the primary user is absent, no such large difference will appear.

Challenges in spectrum sensing

- Needs to high efficiency hardware requirement.
- Hidden primary user problem.
- Decision fusion in cooperative detection.
- Detection capability: Very necessary to detect the primary user (Pus) in a very short time.
- The required SNR for detection may be very low.
- Primary users' detection in spread spectrum.
- The noise.
- Security issues.

THANK YOU

References

- Mishra, V., Mathew, J., & Lau, C. (2016). Cognitive Radio Network- A Review. QoS and Energy Management in Cognitive Radio Network Signals and Communication Technology, 39-95. doi:10.1007/978-3-319-45860-1_2
- Cui, L., & Weiss, M. B. (2013). Can Unlicensed Bands Be Used by Unlicensed Usage? SSRN Electronic Journal SSRN Journal. doi:10.2139/ssrn.2241744.
- Khattab, A., Perkins, D., & Bayoumi, M. A. (2013). Cognitive radio networks: From theory to practice. New York, NY: Springer.
- Kozal, a. S. (2015). Multi User Cooperation Spectrum Sensing in Wireless Cognitive Radio Networks (PhD thesis). Liverpool john moores university. Retrieved january 7, 2017, from <u>http://ethos.bl.uk</u>.
- Yu, f. R. (2011). Cognitive radio mobile ad hoc networks. New York: Springer.
- Dudda, T., & Irnich, T. (2012). Capacity of cellular networks deployed in TV White Space. 2012 IEEE International Symposium on Dynamic Spectrum Access Networks. doi:10.1109/dyspan.2012.6478136.
- Venkataraman, H., & Muntean, G. (2012). Cognitive radio and its application for next generation cellular and wireless networks. Dordrecht: Springer.
- Cordeiro, C., Cavalcanti, D., & Nandagopalan, S. (2010). Cognitive radio for broadband wireless access in TV bands: The IEEE 802.22 standards. Cognitive Radio Communications and Networks, 387-429. doi:10.1016/b978-0-12-374715-0.00014-9.
- Boyd, S. W. (2010). Protocols for dynamic spectrum access in cognitive radio networks (PhD thesis). Clemson University, USA. Retrieved February 8, 2017, from <u>http://tigerprints.clemson.edu</u>

