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1- The Uniform Plane Waves:-
In this chapter we shall apply Maxweell's equation to introduce the fundamental theory of

wave motion.

1-1 The wave equation:-
the effect of propagation of EM wave in medium : Free space ; Lossy dielectric ; Lossless

dielectric (perfect dielectric) and Conducting media. These propagation phenomena for a
type traveling wave called plane wave can be explained or derived by Maxwell’s equations.
Asumme that EM field exists in ahomogenous linear medium with parameter ¢, u & o.

From Maxwell’s equations :

WKE=-B__,H 1)
a a
A =1+ 2 -3+ E 0
a a
v. 5 s pv (3)
VeB =0 4)
To eliminta H from the eq.(1) , let us apply the curl operator to the eq.(1):-
0E  0°E
[ e — £l — ()
V x (V x E) o = €1 o

In a similar manner we eliminate E from the first equation of the second pair, to

obtain
Y % (T % H — oH 87H ©6)
* (Vx H) = —po o — eltgm

We know from vector analysis that for any vector function F that can be differ-

entiated twice, V x (V x F) = V(V - F) — V2F
So eq.(5) & (6) become:-

> 32]3 oE f . (7)
VE —epn—> — no o = 0. "Waye equation for vector E)
2
0°H oH = 0. (Wave equation for vector H) 8

2 o — —
VH — epn Y o Y,
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These are the wave equations.
" If the field is ime-harmonic and we use complex notation, we obtain

V2E + (0’ep — jopuo)E =0,

‘Helmholtz equation (complex wave equation) for vector E]

VZ2H + (w*ep — jopo)H = 0.

I Helmholtz equation (complex wave equation) for vector H]

Where :- ) )
= -’ us + jouoc _
= propagation constant 7 =+ J

y2=(a?-p2)+2jap

a?—B? = —w?ue &2af = wuoc
o:- 1S known as attenuation constant as a measure of the wave is attenuated while traveling in
a medium .
B :- is phase constant

2 2
ue o HE o
f=0 \/2 { 1+a)2<92 +1} rad/m aa)\/7{ 1+W-1} Np/m

Wave velocity v, = %

1-2 Plane Wave In Lossless (Perfect) Dielectrics:-

Parameters .- O = 0,& = gy&,, 1t = e,
a:O, b=, e
1 27z

1-3 Plane Wave In Free Space:-
Free space is nothing more than the perfect dielectric media :

c=0,e=¢,, =M,
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a=0, B=w\us =olc
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2- Radio Channel

Signal transmission in a radio system is based on converting the electrical signals
generated by the transmitter into electromagnetic waves, propagation of waves in space
and conversion back into electrical signals at the receiver side of the system.

The channel is a medium through which the transmitter output is sent. The physical medium
between antennas where electromagnetic waves are propagated is called the propagation
channel. Wireless communications systems exploit the air as a transmission medium.
Obstacles such as buildings, hills and mountains influencing the propagation of
electromagnetic waves, are considered to be part of the propagation channel. Hence, the
propagation path from a radio transmitter antenna to a receiver antenna is called the radio
propagation channel.

The propagation channel, together with the antennas, constitutes the radio channel as
shown in Figure (1). The communication channel is described in terms of the bandwidth
which determining the maximum information rate of the channel. The channel can introduce
various kinds of distortion and delay into the signal as we will see later.

W ——— Propagation Channel

Antennas
) Radio Channel g

Figure (1) Radio and Propagation Channels

Advantages of the radio system include:

1- Operate over large distances.

2- Decrease the installation costs.

3- Be installed faster than other communication mediums.

4- Be easily re-installed in new locations as when plants are relocated.

5- Enable the user (subscriber) to transmit any information in any format that he requires.
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6- Span lakes or rivers, where a cable facility would require special treatment to prevent
water seepage onto the copper conductors, as shown in Figure 1

7- Overcome transmission obstacles such as mountains and deep valleys, where cable
installation cost is too high and difficult to maintain.

8- Bypass the basic interconnection to the local telephone provider as shown in Figure 2.
Wireless communication is being seen as an alternative to quickly and cost effectively
meeting the need for flexible links.

A

||| \ " T
Radio link |||

Radio link

3- Antennas
3-1 Fundamental parameters of Antennas:-
An antenna is an electrical conductor or system of conductors :
% Transmission — radiates EM energy into space.
+ Reception — collects EM energy from space.
+ In two ways commuincation, the same antenna can be used for transmission and
reception .
An antenna is a curcuit element that provides atransition form a guided wave on
transmission line to afree space wave and it provides for collection EM energy.
+ In transmit system the RF signal is generated, amplified, modulated and applied to the
antenna.
% In receive system the antenna collects Em waves.

River

E-field

-— - + -+ o+

(a) Antenna and clectric ficld lines
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3-2 The ideal dipole:-

The simplest infinitesimal radiating element, called a Hertzian dipole, is a current
element of length dl carrying I(t) amperes. Conservation of charge requires charge
reservoirs at each end of the current element containing +q(t) coulombs, where | =
dg/dt. The total charge is zero.

Analysis of the Radiative Field

(other terms used for ideal dipole are hertzian electric dipole, electric dipole,
infinitesimal dipole, and doublet).

Very small finite length (dl << 1).

Assume an element of current of length dl along z- axis.
dl centered on the coordinate origin.

Constant uinform amplitude current I.

" [ ]
A —» e ¢—< E ﬂ
‘\_ 2 I
)
I, :
d - v
/ ¢ -
X
Q) —= """

Figure (1): An elementary doublet.
3-2-1 Magnetic potential at a distance r from this current element is
idl
4nr

A=pgf
The current in the doublet oscillatory with frequency w = 2nf
.= I sin ot
The current is said to be retarded at point P because there is a propagation time delay r/c or

phase delay Br from 0 to P, so that we may write:-
i= I, sin m(t—-%]

Iy sin m[t—-r-] dl
5
A= n -[

dmr
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Referring to figure above, current element dl is symmetrically placed about the origin
with its axis along the z axis, the current on the element has only a z-component, A also has
only the A, component. Thus, the magnetic potential at P is

o Sin (:)(t-‘f-jdl
A = Lo (28
¥

= 47T

11'1‘
J'Idl = Jdi
e

o Igdl sin w[t—--t—)
op Vo o c/

= 47T r

Referring to figure (1) again, it is clear that A has only z-component and
A=A,=0.
Using the transformation between rectangular and spherical components is:

Ay -l [sinBcosd sinBsind cosb |[ A,

Ag | = |cosOcos¢ cosOsing —sin@|| A,
Ay | | —sin¢ COs ¢ 0 J A,
Iy dl
A=A cosB—“DD sin w| t—— |cos 6
= = 4mr c
Iy dl

Ag=-A4,5INn8 = - ”04;:_ S 1m[t—£~] sin 6

Aq}:D

3-2-2 The magnetic field intensity H can be expressed as:-

H= = (v x A)
Ho

Thus, using curl equation from the Appendix-IV

gradl a 1 a —1~a
}rzsiner rs'mB0 r @
o} 2 3
Ha, + Hyg + Hpa, = L! -:/— ; —f
Mo | or a0 od
] i, r Ag rsin 6 Ay
|

Equating the coefficients of the 4, a4 and a,, gets
%
H. =

- i (A sin 6) _ e
0P

Ko7 sin 8| 00



Antenna and Wave Propagation (Chapter Two)

Diyala University Communication Dep. 3 Stage
Engineering Collage Asst. Lect. Jinan N. Shihab

Hﬁll 1 g_@,__a(m,)}

Ho|rsin® 0 or
1198 24
d Hy= —|—(rdg)-—
= ' uor[ar"’“*) =
Since A, = 0 and A, and A, are not the function of ¢. Hence
H,=0; Hy=0

10 wuledl . [ r). ) a(uorgdx : [ r)
H = | =] == f-— e | SN s
y unr[ar( dn =0 ¢ = oo\ 4nr n c s

. r
; _ lodising Sm“’(";] 0 (t_r)
T dn r 1 ¢

+—C0S 0

There are two parts of which:

1) Tizsin w (t — /o) : Which represent the induction field.

2) = cosw(t — T/,) : Represents the radiative field which is available at the point r. It is a
rc ¢

progressive waveform and is the electromagnetic energy propagated in space. We generally
take only this term into account for radiation.

3-2-3 The electric field E can be obtaining from magnetic field i H by applying

Maxwell's first equation for free space:

oE
VxH=e— (as | = 0 for free space)

of

The above equation in its components form can be written as follows :

1 1 4 1 4 ;
: 6 =
r’sin® rsin@ - re !
|
5. 5, 3 | (OE, OE, OE
— L ¢ | = & k T S _..-..D- 4 _..._.h?.
cr o0 o ct ot ot
0 0 rsin O ch
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1 | Jrf}df sin’ U( 1. .0 : O,

— Dt +—Cos o =g —

rsin 0 (':‘El{ 4n \ r? re c ot

)
where t' = [fv—J
c

1 [I,dl (sin ot swt'] 2 ] 5)2
: [ 1odl ;} L ocosw ]}ii(sng} :E&

rsin 6| 4n r cr | 08 1% ot

1 [I,dl [sinet o cosot’ , 1 OE

: . { —+ }-Zsme«mse =e—

rsinB| 4n r cr " ot

2Ihdicos© |[sin ot o coswt
0 . et > ot =0OE,
4n e r cr
Taking the integral of the above equation, we yields
2lydlcos O ( sinwt’ o cos ot
: j( e )dt = [oE,
4ne r cr

F - 2[, dl cos 6 [ cosot'  osinof
j 4ne wr’ wcr?
g b 2l dl cos 8 [ sin o' cos mt']
" dne | cr? or’

The electric field strength from a current element along the radial direction for r
>> 7 is negligible because varying as a function of 1/r* and 1/r®. Hence substituting H

in equation (1.11) and performing similar operation as before, we obtain:-
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1 0 | Iydlsin 8 (sin o’ o cos off ol OE,
ror|  4n r2 rc [ ot
Iydlsin6 | o (si:mmt‘+mc05mt’}' il OEq
4nr or r C ! ot
OE, Ipdlsin8[ o . ,( m] o cos ot sin of
—_— =e—————| ——sinot'| —— |- -
ot 4nre c ¢ cr 2
Idlsind| w’sinot ocosof sinof
Eg =— —— — |ot
4nre c cr r
Taking the integral of the above equation
Iodlsin®| o? sin of’
j'aso = 2 smlc:mt'+-ﬂl«:«:m5ur.f.u!'+—2L dt
4ner c? c? r
Fo_ Ip dlsin ® +m2 coswt' osinwl' cosof
: 4ne cor r? © o
E - I, dl sin B[m cos @t sin ot coswt'
7 4ne ctr cr? or’

The inverse distance (1/r) first, term is the radiating field forr» 1. Thus,

( . a)
e Lw C0S @ [t-a
RE C°7
H+(Radiat10n) = wcosm (f _ ﬁJ
4mcer -

The equations by using phase delay pr from 0 to P:

IAz

41 (jﬁ

¢ =

’r'2

—) e JBT sin B
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IAz | jw 1 1 _ij . ~ 1Az 1 1 —j ~
E=22 % B4 _ e P sing 6 + —| |E = +- e 1P cosOf
41 T e r2 Jjwer3 27 e r¢2  jwers

Note that if the medium surrounding the dipole is air or free space, p=w,/uy&, can be

written as:-

H—Idl' (1+ 1)e_jﬁr ing @
B 4771'8 jpr/ r >t
Idl 1 1 e BT ~ Idl 1 1 :
_ lat; 1 . lat 111 _-jpr N
E o JWH [1+ jﬁr+ (jﬁr)z] - sinf 6 + Znn[ - jﬁz]e cosOt

Radiation field term Static field(quasi-stationary)

Induction field term

Forr < pynt the static field is dominant (region very close to the hertzian dipole)

Forr > % ,the radiation field is dominant(far field).

Forr = % ,the induction field is dominant(Near field).

If pr >> 1, far-field boundary condition, then Radiation field:-

ar e ibfr
Hy = - sinf @
i e JBr
E9=47T]W,u " sinf 6

More specifically, we define the boundary between the near and the far zones by the

value of r given by

r—ZdZ
T

where d is the largest dimension of the antenna.
So, a current element located in space, carrying an oscillatory current gives rise to two

radiating field E» and Hg the electric field being along the meridian (longitude) of the sphere

(0) and the magnetic field along the latitude of the sphere (@). Both the fields are

perpendicular to each other. By these, following results are obtained:

1.The field is maximum at the equator and equal to zero at poles.

10



Antenna and Wave Propagation (Chapter Two)
Diyala University Communication Dep. 3" Stage
Engineering Collage Asst. Lect. Jinan N. Shihab

2.The field intensities increase with frequency.

3.Both the fields are in time phase indicating transfer of energy.

Impedance is the ratio of the (Eq) to magnetic (Hy) :-

Eg wu wu  [u

= H_@ B wype &
No = 120w 2 = 376.7 Q2 for free space at py, = 4w X 1077& &, = 8.854 x 10712

So, the radiating wave has the same impedance as the free space impedance

of 120 = ohms and hence the radiating field is matched into the free space impedance
for maximum transfer of power.

3-2-4 Power radiated by a current element:-

The time-average power density:-
1 1 .
Pave = ERe(Es X Hg) = ERe(EGSH(DaT)

This is the power radiated by the current element along the radius vector r of the sphere and
Is perpendicular to (@) and (6). The total power radiated is obtained by taking the surface

integral of over any surface enclosing the current element as:-

1 Idl e JPT e JPT .
Drad = fpave.ds 2(4 )Zj]w,u sin6 0 x —]ﬁ sin@ @

Then ds =1r?sin6df8dp+ when 0 x Q=+

1 Idl 2T T 5in20 _
Praa = 5 (7)°Whp f f —— r?sin0 do dp
0 0

1 Idl uﬁ 2 fdl

3-2-5 the radiation resistance:-

the power radiated from an ideal dipole of length dl <<A and input current | is:-
1 2
Praa = 2 R, |1

1
note that a f actorz is present because current I is the peak value in the

time waveform

11
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wuf 1
Praa = m (Idl)z = E erllz
Then for ideal dipole 9 ‘;’T’f (dD)%= R, = 80n2(%)2!2
Appendix

A-phscial constant

| quantity symbol value units
speed of light in vacuum Co, C 299792 458 ms—!
permittivity of vacuum €o 8.854187817 x 10712 Fm!
permeability of vacuum Ho 41T %< 107 Hm!
characteristic impedance nNo, Zo 376.730313461 Q
electron charge e 1.602176462 x 1012 C
electron mass me 9.109381887 x 10731 kg
Boltzmann constant k 1.380650324 x 1023 JK!
Avogadro constant Na,L 6.022 141994 x 1023 mol !
Planck constant h 6.626 06876 x 1034 J/Hz
Gravitational constant G 6.67259 x 1011 m3kg 152
Earth mass Mg 5.072 x 1024 kg
Earth equatorial radius de 6378 km

B- Electromagnetic Freqguency Bands

RF Spectrum

band designations frequency wavelength
ELF Extremely Low Frequency 30-300 Hz 1-10 Mm
VF Voice Frequency 300-3000 Hz 100-1000 km
VLF Very Low Frequency 3-30 kHz 10-100 km
LE Low Frequency 30-300 kHz 1-10 km
MF Medium Frequency 300-3000 kHz 100-1000 m
HF High Frequency 3-30 MHz 10-100 m
VHF Very High Frequency 30-300 MHz 1-10 m
UHF Ultra High Frequency 300-3000 MHz 10-100 cm
SHF Super High Frequency 3-30 GHz 1-10 cm
EHF Extremely High Frequency 30-300 GHz 1-10 mm

Submillimeter 300-3000 GHz 100-1000 pgm

12
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C. Vector Identities and Integral Theorems

Algebraic Identities
|AI?|B|* = |A- B|* + |Ax B|? (C.1)
(AXB)-C=(Bx(C)-A=(CxA)-B (C.2)
Ax(BxC)=B(A-C)-C(A-B) (BAC-CAB rule) (C.3)
(AXB)-(CxD)=(A-C)(B-D)-(A-D)(B-C) (C4)
(AXxB)x(CxD) =[(AxB)-D]C-[(Ax B)-C]D (C.5)
A=nx(Axn)+(M-A)n=A, +A4 (C.6)

where 1 is any unit vector, and A,, A are the components of A perpendicular and
parallel to n. Note also that i x (Ax n)= (A X A) XA.

Differential Identites
V x (V) -0 (C.7)
V- (VxA -0 (C.8)
V-(gA) -A-Vy + ¢V - A (C.9)
Vx(gAd) —geyVxA:+TVypyxA (C.10)
VIA-B) - (A-V)B+ (B-V)A+ Ax (VxB)+Bx (V xA) (C.11)
V-(AxB)-B-(VxA-A-(VxB) (C.12)
Vx(AxB)-A(V-B)-B(V-A)+(B-V)A-(A-V)B (C.13)
Vx(VxA -V(V-A)-V3A (C.14)
AxVB, + A,VB, + A,VB. - (A-V)B+ Ax (V xB) (C.15)
B.VA, + ByVAy +B, VA, - (B-V)A+Bx(V xA) (C.16)
MxV)IxA-Ax(VxA)+(A-V)IA-0A(V - A (C.17)

w-VIE—E(h-Vy)= [(A-V)(wE)+ax (Vx (gE) -avV - (wE |

(C.18)
+ AV -E- (AxExVy —-wax (VxE —(a-E Vy]|

13
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Withr=xX+ yyv+z2 r - |r| = X7+ y7 + 22, and the unit vector # - r/r, we have:

Vr-f, VPR -o2r, v%-_rl. V.r-3, Vxr-0, v.r-% (C.19)
Integral Theorems for Closed Surfaces

The theorems involve a volume V surrounded by a closed surface S. The divergence or
(Gauss’ theorem is:

j V-Adv - f A-nds (Gauss’ divergence theorem) (C.20)
v 5
where 0 is the ourward normal 1o the surface. Green's first and second identities are:
I (@V2y + Vo - V] dV - f 2% as (C.21)
v s én
oy oQp
20 _ 2 _ oy .,.°9
@V - yvig|av fs (qp 2 _yE )as (C.22)
where % = f - V is the directional derivative along fi. Some related theorems are:
2 cy
j vwdv-fn-vwds-§_ds (C.23)
v 5 s on
LPthdV - Lwﬁds (C.24)
2 cA
VAdV - ¢ (A-V)AdS - § — dS (C.25)
v 5 san
fs(ﬁ x V) xAdS - fs[ﬁ *x(VxA)+m-V)A-a(V-A)|dS-0 (C.26)
LV x AdV = fsﬁ x AdS (C.27)

Using Egs. (C.18) and (C.26), we find:

fs (‘”%‘Ez_r)ds'

(C.28)
-fs[awv E- (AxE)xVy — wix (V x B — (- E) Vy|ds
The vectorial forms of Green's identities are [605,602]:
L(VxA-V:-cB—A-VxVxB’)dV—fsh-(AxmedS (C.29)

L'(BaVXVXA-A-V)(vXB]dV—{cﬁ- (AxVxB-BxV xA)dS (C30)

14
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Integral Theorems for Open Surfaces

Stokes’ theorem involves an open surface S and its boundary contour C:

I n-vxAdS-= { A-dl (Stokes’ theorem) (C.31)
L3 C

where dl is the tangential path length around C. Some related theorems are:

L[wﬁ-VxA—(ﬁxA)-Vw]dS=£:wA-dl (C.32)
L[(vw) AV xA— ((AxA)-V)Vy]ds = fc(vwm .dl (€.33)
Lnxvi,udsz §del (C.34)

Js(ﬁxV)xAdS _ L[ﬁx (V x A)+(h-V)A—A(V-A)]dS = §Cd1xA (C35)

fﬁdS:l rx dl (C.36)
s 2 Jc

Eq. (C.36) is a special case of (C.35). Using Egs. (C.18) and (C.35) we find:

I (w%-faa—‘;’)ds+§ WEx dl =
s € (C.37)

=L[ﬁwV-E— (AxE)xVy —-ywnx (VxE-(-EVy|ds

Cartesian Coordinates
Jy .oy _oyw
oX Y ay tz oz
gy 'y Py
2 —
VW =2xz Y oyz * 922

d0Ax ©OAy DA
~0x oy o0z

Vy =%

_ (oA, 24, _(an aAz) _(8A, dAx
VXA_x(ay - az)”’ oz  ox ) T \ox " oy
5 v z
_|2 2 2
Ax Ay Ay

15
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Cylindrical Coordinates

o (o5
V-A:% a(ggp) % aa,::, a;zz
V<A=p %%';Z_% +$(aa/:p_& p(a(PA.;,)_aAp

EC oy — 2y — %5(;:— PSP — pVS(z — z°)

Spherical Coordinates

vw=i~?+é%g—‘g+$ﬁ%

e [ ) e = +rzsilnzegqu;
= rl_2 a(';;"') = rsilne a(SiggAG) & rsilnB ai;:f
VoAt (T %) or (me T )

r or 06

6(3)(r—r')=r l S(r—r)s@ —0)s5(¢p— ")

2sin @

p=rsinf i=2cosf +pPsind 7 =tcos0 - Osind
z=rcos®  @=-zsin@+Pcos®  P=isind+0cosd

X = rsinf cos ¢ i=Xcos¢psin® +ysingsind + zcos0
y =rsinfsin¢ 0 =xcospcosf +ysingcost - zsind
Z=rcost &z-isind)ﬂ"cosd)

and the inverse relationships:

"~

= fsinf cosp + O cos O cosp - Psin
=fsinfsinp +0cosOsing + cose
z=rtcos - 0sin0

~

16
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Transformations Between Coordinate Systems
A vector A can be expressed component-wise in the three coordinate systems as:
A=XAx+VAy+2A;
=pAy+ Ay +1A; (E4)
=fA +0Ap+ Ay

The components in one coordinate system can be expressed in terms of the compo-
nents of another by using the following relationships between the unit vectors, which
were also given in Egs. (13.8.1)-(13.8.3):

X=pcos¢ P =xXcos¢ +ysing cosp — ¢ sing

X=p
y =psing ¢ = —Xsing + ycos¢p v =pPsing + Pcosp (E3)

17



