<table>
<thead>
<tr>
<th>م. سمير داود علي</th>
<th>البريد الإلكتروني: Enineering_sameer@yahoo.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>3 hrs per week, theory: 2 hrs, tutorial: 1 hrs</td>
<td></td>
</tr>
<tr>
<td>Definition and fundamental Aspects of thermodynamics</td>
<td></td>
</tr>
<tr>
<td>Definition and fundamental Aspects of thermodynamics, pure substance and phase change, work and heat, first and second low of thermodynamics, different standard cycles and their calculation</td>
<td></td>
</tr>
<tr>
<td>Fundamental of Thermodynamics- solution, Bonntag, Bornakke and Van Wylen</td>
<td></td>
</tr>
<tr>
<td>Engineering Thermodynamics, work and heat transfer, by Rogers, C.F.C and Mayhew.</td>
<td></td>
</tr>
<tr>
<td>A couple of quizzes have to be done during the both semesters</td>
<td></td>
</tr>
</tbody>
</table>
Course weekly Outline-Semester(1)

<table>
<thead>
<tr>
<th>الملاحظات</th>
<th>المادة النظرية</th>
<th>محتوى المادة</th>
<th>التاريخ</th>
<th>القيمة</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>- What is thermodynamics II. Fundamentals</td>
<td>2014/9/22</td>
<td>1</td>
</tr>
</tbody>
</table>
| | **Properties of pure substance.** | - Pure substance phases
- Phase-change processes
- Diagrams of (P-v) and (T-V) | 2014/9/29 | 2 |
| | **Steam tables.** | - Saturated vapor tables, superheated vapor tables.
- Illustrative example | 2014/10/6 | 3 |
| | **Steam properties.** | - Determine parameters of state of steam
- Basic relations and dryness fraction | 2014/10/13 | 4 |
| | **Steam diagrams.** | - Study diagrams (P-v), (T-V) and (h-s) | 2014/10/20 | 5 |
| | **Steam reversible non-flow processes** | - Constant volume process.
- Constant pressure process.
- Isothermal process.
- Isentropic process.
- Polytropic processes.
- Illustrative example | 2014/10/27 | 6 |
| | | | 2014/11/3 | 7 |
| | **Steam reversible non-flow processes** | - Constant volume process.
- Constant pressure process.
- Isothermal process.
- Isentropic process.
- Polytropic processes.
- Illustrative example | 2014/11/10 | 8 |
| | | | 2014/11/17 | 9 |
| | **Throttling process. Separation throttling calorimeter.** | - Throttling process.
- Throttling calorimeter.
- Separation-throttling calorimeter.
- Illustrative example | 2014/11/24 | 10 |
| | | | 2014/12/1 | 11 |
| | **Unsteady flow energy equation** | - Derivation, applications.
- Illustrative example | 2014/12/8 | 12 |
| | | | 2014/12/22 | 14 |
| | | | 2014/12/29 | 15 |

Half-Year Break
<table>
<thead>
<tr>
<th>الملاحظات</th>
<th>المادة النظرية</th>
<th>محتوى المادة</th>
<th>التاريخ</th>
<th>عدد الساعات</th>
</tr>
</thead>
</table>
| | Application of steady state energy equation | -Boiler
-Condenser
-Compressor
-Turbine
-Diffuser and nozzle.
-Illustrative example | 2015/2/16 | 16 |
| | Steam cycles | -Carnot cycle.
-Ideal Rankine cycle.
-Illustrative example.
-The effect of steam conditions on thermal efficiency and steam specific consumption.
-Overall efficiency.
-Rankine cycle with superheat.
-Illustrative example
-Rankine cycle with reheat.
-Illustrative example.
-Regenerative Rankine cycle with open feed water heaters.
-Illustrative example.
-Regenerative Rankine cycle with closed feed water heaters.
-Illustrative example | 2015/3/9 | 19 |
| | Gas turbine cycles | -Simple gas turbine (Brayton) cycle.
-Illustrative example
-Brayton cycle with regeneration.
-Illustrative example
-Brayton cycle with intercooling and reheating.
-Illustrative example | 2015/4/13 | 24 |
| | Reciprocating Positive displacement air compressors | -Introduction
-Definitions
-Components
-Indicated work.
-Steady flow analysis.
-Illustrative example | 2015/4/20 | 25 |
<table>
<thead>
<tr>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
</table>
| The condition of minimum work | - Isothermal efficiency.
- Illustrative example.
- Effect of clearance volume.
- Volumetric efficiency.
- Actual indicator diagram.
- Illustrative example.
- Multi-stage compression.
- Inter-cooling effect on Multistage compression.
- Illustrative example.
- The ideal intermediate pressure.
- Energy balance of a two stage machine with intercooling.
- Illustrative example.
- Roots air blower.
- Van air compressors.
- Illustrative example. |
| Rotary air compressors | - Radial compressors.
- Axial compressors.
- Illustrative example |
| Gas-vapor mixtures. | - Specific and relative humidity of air.
- Dew point temperature.
- Illustrative example.
- Adiabatic saturation and wet-bulb temperature.
- Illustrative example.
- Psychometric chart.
- Illustrative example. |
| Refrigeration cycles | - Idea vapor-compression refrigeration cycle.
- Illustrative example.
- Idea gas refrigeration cycle.
- Illustrative example. |

Dates:
- 2015/4/27
- 2015/4/4
- 2015/4/11
- 2015/4/18
- 2015/4/14

Signatures:
 توقيع العميد:
 توقيع الاستاذ: