
Functions or Subprograms (Subroutines)

In computer programming language, a subroutine is a sequence of program instructions that perform
a specific task, packaged as a unit. This unit can then be used in programs wherever that particular
task should be performed. Subprograms may be defined within programs, or separately
in libraries that can be used by multiple programs.

In different programming languages a subroutine may be called a procedure, a function, a routine,
a method, or a subprogram. The generic term callable unit is sometimes used.

As the name subprogram suggests, a subroutine behaves in much the same way as a computer
program that is used as one step in a larger program or another subprogram. A subroutine is often
coded so that it can be started (called) several times and/or from several places during one execution
of the program, including from other subroutines, and then branch back (return) to the next
instruction after the call once the subroutine's task is done.

Subroutines are a powerful programming tool, and the syntax of many programming
languages includes support for writing and using them. Judicious use of subroutines (for example,
through the structured programming approach) will often substantially reduce the cost of developing
and maintaining a large program, while increasing its quality and reliability. Subroutines, often
collected into libraries, are an important mechanism for sharing and trading software. The discipline
of object-oriented programming is based on objects and methods (which are subroutines attached to
these objects or object classes).

History

In the (very) early assemblers, subroutine support was limited. Subroutines were not explicitly
separated from each other or from the main program, and indeed the source code of a subroutine
could be interspersed with that of other subprograms. Some assemblers would offer
predefined macros to generate the call and return sequences. Later assemblers (1960s) had much
more sophisticated support for both in-line and separately assembled subroutines that could be linked
together.

Self-modifying code
The first use of subprograms was on early computers that were programmed in machine
code or assembly language, and did not have a specific call instruction. On those computers, each
subroutine call had to be implemented as a sequence of lower level machine instructions that relied
on self-modifying code. By replacing the operand of a branch instruction at the end of the
procedure's body, execution could then be returned to the proper location (designated by the return
address) in the calling program (usually just after the instruction that jumped into the subroutine).

Main concepts

Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software
.c

om Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software

.c
om

http://www.tracker-software.com/buy-now
http://www.tracker-software.com/buy-now

The content of a subroutine is its body, the piece of program code that is executed when the
subroutine is called or invoked.
A subroutine may be written so that it expects to obtain one or more data values from the calling
program (its parameters or formal parameters). The calling program provides actual values for these
parameters, called arguments. Different programming languages may use different conventions for
passing arguments:

Convention Description Common use

Call by value Argument is evaluated and copy of value
is passed to subroutine

C, C++, Java (References to objects and
arrays are also passed by value)

Call by
reference

Reference to argument, typically its
address is passed C++, Fortran, PL/1

Call by result Parameter value is copied back to
argument on return from the subroutine Ada OUT parameters

Call by value-
result

Parameter value is copied back on entry
to the subroutine and again on return Algol

Call by name
Like a macro – replace the parameters
with the unevaluated argument
expressions

Algol, Scala

Call by
constant value

Like call by value except that the
parameter is treated as a constant

PL/I NONASSIGNABLE parameters, Ada
IN parameters

Language support

Programming languages usually include specific constructs to:

 delimit the part of the program (body) that makes up the subroutine

 assign an identifier (name) to the subroutine

 specify the names and/or data types of its parameters and/or return values

 provide a private naming scope for its temporary variables

 identify variables outside the subroutine that are accessible within it

 call the subroutine

 provide values to its parameters

 specify the return values from within its body

 return to the calling program

 dispose of the values returned by a call

 handle any exceptional conditions encountered during the call

Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software
.c

om Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software

.c
om

http://www.tracker-software.com/buy-now
http://www.tracker-software.com/buy-now

 package subroutines into a module, library, object, class, etc.

Some programming languages, such as Visual Basic .NET, Pascal, Fortran, and Ada, distinguish

between functions or function subprograms, which provide an explicit return value to the calling

program, and subroutines or procedures, which do not. In those languages, function calls are

normally embedded in expressions (e.g., a sqrt function may be called as y = z + sqrt(x)); whereas

procedure calls behave syntactically as statements (e.g., a print procedure may be called as if x > 0

then print(x). Other languages, such as C and Lisp, do not make this distinction, and treat those

terms as synonymous.

Advantages

The advantages of breaking a program into subroutines include:

 decomposing a complex programming task into simpler steps: this is one of the two main tools

of structured programming, along with data structures

 reducing duplicate code within a program

 enabling reuse of code across multiple programs

 dividing a large programming task among various programmers, or various stages of a project

 hiding implementation details from users of the subroutine

 improving traceability, i.e. most languages offer ways to obtain the call trace which includes the

names of the involved subroutines and perhaps even more information such as file names and

line numbers; by not decomposing the code into subroutines, debugging would be impaired

severely

Disadvantages

Invoking a subroutine (versus using in-line code) imposes some computational overhead in the call

mechanism. The subroutine typically requires standard housekeeping code – both at entry to, and

Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software
.c

om Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software

.c
om

http://www.tracker-software.com/buy-now
http://www.tracker-software.com/buy-now

exit from, the function (function prologue and epilogue – usually saving general purpose

registers and return address as a minimum).

C and C++ examples

In the C and C++ programming languages, subprograms are termed functions (or member

functions when associated with a class). These languages use the special keyword void to indicate

that a function takes no parameters (especially in C) and/or does not return any value. Note that

C/C++ functions can have side-effects, including modifying any variables which addresses are passed

as parameters (i.e. passed by reference). Examples:

 void function1(void) { /* some code */ }

The function does not return a value and has to be called as a stand-alone function,

e.g., function1();
 int function2(void)
 {
 return 5;
 }

This function returns a result (the number 5), and the call can be part of an expression, e.g.,

 x + function2()
 char function3(int number)
 {
 char selection[] = {'S','M','T','W','F','T','S'};
 return selection[number];
 }

This function converts a number between 0 to 6 into the initial letter of the corresponding day of the

week, namely 0 to 'S', 1 to 'M', ..., 6 to 'S'. The result of calling it might be assigned to a variable,

e.g., num_day = function3(number);.
 void function4(int *pointer_to_var)
 {
 (*pointer_to_var)++;
 }

This function does not return a value but modifies the variable which address is passed as the

parameter; it would be called with

Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software
.c

om Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software

.c
om

http://www.tracker-software.com/buy-now
http://www.tracker-software.com/buy-now

 "function4(&variable_to_increment);".

Visual Basic 6 Examples

In the Visual Basic 6 language, subprograms are termed functions or subs (or methodswhen
associated with a class). Visual Basic 6 uses various terms called types to define what is being passed
as a parameter. By default, an unspecified variable is registered as a variant type and can be passed
as ByRef (default) or ByVal. Also, when a function or sub is declared, it is given a public, private, or
friend designation, which determines whether it can be accessed outside the module and/or project
that it was declared in.

 By value [ByVal] – a way of passing the value of an argument to a procedure instead of passing
the address. This allows the procedure to access a copy of the variable. As a result, the variable's
actual value can't be changed by the procedure to which it is passed.

 By reference [ByRef] – a way of passing the address of an argument to a procedure instead of
passing the value. This allows the procedure to access the actual variable. As a result, the
variable's actual value can be changed by the procedure to which it is passed. Unless otherwise
specified, arguments are passed by reference.

 Public (optional) – indicates that the function procedure is accessible to all other procedures in all
modules. If used in a module that contains an Option Private, the procedure is not available
outside the project.

 Private (optional) – indicates that the function procedure is accessible only to other procedures in
the module where it is declared.

 Friend (optional) – used only in a class module. Indicates that the Function procedure is visible
throughout the project, but not visible to a controller of an instance of an object.

Private Function Function1()
 ' Some Code Here
End Function

The function does not return a value and has to be called as a stand-alone function, e.g., Function1
Private Function Function2() as Integer
 Function2 = 5
End Function

This function returns a result (the number 5), and the call can be part of an expression, e.g., x +
Function2()
Private Function Function3(ByVal intValue as Integer) as String
 Dim strArray(6) as String
 strArray = Array("M", "T", "W", "T", "F", "S", "S")
 Function3 = strArray(intValue)
End Function

Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software
.c

om Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software

.c
om

http://www.tracker-software.com/buy-now
http://www.tracker-software.com/buy-now

This function converts a number between 0 and 6 into the initial letter of the corresponding day of the
week, namely 0 to 'M', 1 to 'T', ..., 6 to 'S'. The result of calling it might be assigned to a variable,
e.g., num_day = Function3(number).
Private Function Function4(ByRef intValue as Integer)
 intValue = intValue + 1
End Function

This function does not return a value but modifies the variable which address is passed as the
parameter; it would be called with "Function4(variable_to_increment)".

Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software
.c

om Clic
k t

o buy N
OW!

PDF-XChange

w
w

w.tracker-software

.c
om

http://www.tracker-software.com/buy-now
http://www.tracker-software.com/buy-now

