Work, Heat, and the First Law

- Work: \(w = F \cdot A \)
 - applied force \(F \)
 - distance \(A \)

Expansion work

\[F = p_{\text{ext}}A \]

\[w = -(p_{\text{ext}}A)A = - p_{\text{ext}} \Delta V \]

Convention: Having a "-" sign here implies \(w > 0 \) if \(\Delta V < 0 \), that is, positive work means that the surroundings do work to the system. If the system does work on the surroundings \((\Delta V > 0)\) then \(w < 0 \).

If \(p_{\text{ext}} \) is not constant, then we have to look at infinitesimal changes

\[d-w = -p_{\text{ext}}dV \]

\(d - \) means this is not an exact differential

Integral

\[w = - \int_{1}^{2} p_{\text{ext}}dV \]

depends on the path!!!

- Path dependence of \(w \)

Example: assume a reversible process so that \(p_{\text{ext}} = p \)

\[Ar \ (g, p_1, V_1) = Ar \ (g, p_2, V_2) \]

Compression \(V_1 > V_2 \) and \(p_1 < p_2 \)
Two paths:

(1) First \(V_1 \rightarrow V_2 \) at \(p = p_1 \) then \(p_1 \rightarrow p_2 \) at \(V = V_2 \)

(2) First \(p_1 \rightarrow p_2 \) at \(V = V_1 \) then \(V_1 \rightarrow V_2 \) at \(p = p_2 \)

\[
\begin{align*}
\text{Ar}(g, p_1, V_1) &= \text{Ar}(g, p_1, V_2) = \text{Ar}(g, p_2, V_2) \\
\text{Ar}(g, p_1, V_1) &= \text{Ar}(g, p_2, V_1) = \text{Ar}(g, p_2, V_2)
\end{align*}
\]

\[
\begin{align*}
\mathbf{w}_{(1)} &= - \int_{V_1}^{V_2} p \text{ext} \, dV - \int_{V_1}^{V_2} p^{\text{ext}} \, dV \\
&= - \int_{V_1}^{V_2} p \, dV = -p (V_2 - V_1) \\
\mathbf{w}_{(2)} &= - \int_{V_1}^{V_2} p \text{ext} \, dV - \int_{V_1}^{V_2} p^{\text{ext}} \, dV \\
&= - \int_{V_1}^{V_2} p \, dV = -p (V_2 - V_1)
\end{align*}
\]

(Note \(w > 0 \), work done to system to compress it)

\[
\mathbf{w}_{(1)} \neq \mathbf{w}_{(2)} !!!!
\]

Note for the closed cycle [path (1)] - [path (2)],

\(w \) is not a state function

\[\oint dw \neq 0 \quad \text{closed cycle} \]

cannot write \(w = f(p, V) \)
Work

Work (w) is not a function of state.

For a cyclic process, it is possible for \[\int \text{d}w \neq 0 \]

- **Heat**

That quantity flowing between the system and the surroundings that can be used to change the temperature of the system and/or the surroundings.

Sign convention:
- If heat enters the system, then it is positive.

Heat (q), like w, is a function of path. Not a state function

It is possible to have a change of state

\[(p_1, V_1, T_1) = (p_2, V_2, T_2) \]

- adiabatically (without heat transferred)
- nonadiabatically.

Historically measured in calories

\[1 \text{ cal} = \text{heat needed to raise } 1 \text{ g } H_2O \text{ } \text{1°C, from } 14.5\text{°C to 15.5°C} \]

The modern unit of heat (and work) is the Joule.

\[1 \text{ cal} = 4.184 \text{ J} \]
Heat Capacity

- connects heat with temperature

\[dq = C_{\text{path}} \, dT \quad \text{or} \quad C_{\text{path}} = \left| \frac{dq}{dT} \right| \]

heat capacity is path dependent

Constant volume: \(C_V \)
Constant volume: \(C_p \)

\[\therefore \quad q = \int_{\text{path}} C_{\text{path}} dT \]

Equivalence of work and heat

[Joule (1840's)]

Joule showed that it's possible to raise the temperature of \(\text{H}_2\text{O} \)

(a) with only heat

(b) with only work
(weight falls & churns propeller)
Experimentally it was found that

\[\int (\, dw + dq \,) = 0 \]

\[\Rightarrow \quad \text{The sum } (w + q) \text{ is independent of path} \]

\[\Rightarrow \quad \text{This implies that there is a state function whose differential is } \]

\[dw + dq \]

We define it as \(U \), the "internal energy" or just "energy"

\[\therefore \quad dU = dw + dq \]

For a cyclic process \(\int dU \neq 0 \)

For a change from state 1 to state 2,

\[\Delta U = \int_{1}^{2} dU = U_2 - U_1 = q + w \]

each depends on path individually, but not the sum

For fixed \(n \), we just need to know 2 properties, e.g. \((T, V)\), to fully describe the system.

So

\[U = U(T, V) \]

\(U \) is an extensive function (scales with system size).

\[U = \frac{U}{n} \]

is molar energy (intensive function)
Mathematical statement:
\[dU = -dq + dw \]
or
\[\Delta U = q + w \]
or
\[- \int d-q = \int d-w \]

Corollary: Conservation of energy

\[\Delta U_{\text{system}} = q + w \quad \Delta U_{\text{surroundings}} = -q - w \]

\[\Rightarrow \Delta U_{\text{universe}} = \Delta U_{\text{system}} + \Delta U_{\text{surroundings}} = 0 \]

Clausius statement of 1st Law:

The energy of the universe is conserved.