

1

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

 Introduction

 In general there are two broad categories of logic devices, namely
fixed logic devices and programmable logic devices. Whereas a fixed
logic device such as a logic gate or a multiplexer or a flip-flop performs
a given logic function that is known at the time of device manufacture, a
programmable logic device can be configured by the user to perform a
large variety of logic functions.
Fixed Logic Devices Programmable Logic Devices
the time required from design to
the final stage when the
manufactured device is actually
available is long

PLD-based design requires much
less time from design cycle to
production run.

In the case of fixed logic devices,
the process of design validation
followed by incorporation of
changes, which leads to an
enhanced cost of the initial
prototype device.

In the case of PLDs, inexpensive
software tools can be used for
quick validation of designs.

These devices cannot be changed
when the user want

PLDs offer to the users much more
flexibility during the design cycle.

Fixed logic devices have an edge
for large-volume applications as
they can be mass produced more
economically. They are also the
preferred choice in applications
requiring the highest performance
level.

2

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

There are many types of programmable logic device, distinguishable
from one another in terms of architecture, logic capacity,
programmability and certain other specific features.
Types of Programmable Logic Devices
SPLDs (Simple Programmable Logic Devices)

– ROM (Read-Only Memory)
– PLA (Programmable Logic Array)
– PAL (Programmable Array Logic)
– GAL (Generic Array Logic)
– CPLD (Complex Programmable Logic Device)
– FPGA (Field-Programmable Gate Array)

The first three varieties are quite similar to each other:
– They all have an input connection matrix, which connects

the inputs of the device to an array of AND-gates.
– They all have an output connection matrix, which connect

the outputs of the AND-gates to the inputs of OR-gates
which drive the outputs of the device.

These devices can be programed by blowing fuses

 Programmable ROMs

 PROM (Programmable Read Only Memory) and EPROM (Erasable
Programmable Read Only Memory) can be considered to be
predecessors to PLDs. The architecture of a programmable ROM allows
the user to hardware-implement an arbitrary combinational function of a
given number of inputs. When used as a memory device, n inputs of the
ROM (called address lines in this case) and m outputs (called data
lines) can be used to store m-bit words. When used as a PLD, it can
be used to implement m different combinational functions, with each

3

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

function being a chosen function of n variables. Any conceivable n-
variable Boolean function can be made to appear at any of the m output
lines. A generalized ROM device with n inputs and m outputs has
hard-wired AND gates at the input and m programmable OR gates at
the output. Each AND gate has n inputs, and each OR gate has
inputs. Thus, each OR gate can be used to generate any conceivable
Boolean function of n variables, and this generalized ROM can be used
to produce m arbitrary n-variable Boolean functions . Figure 1 shows
the internal architecture of a PROM having four input lines, a hard-wired
array of 16 AND gates and a programmable array of four OR gates. A
cross () indicates an intact (or unprogrammed) fusible link or
interconnection, and a dot (•) indicates a hard-wired interconnection.
PROMs, EPROMs and EEPROMs (Electrically Erasable Programmable
Read Only Memory) can be programmed using standard PROM
programmers. One of the major disadvantages of PROMs is their
inefficient use of logic capacity. It is not economical to use PROMs for
all those applications. Other disadvantages include relatively higher
power consumption and an inability to provide safe covers for
asynchronous logic transitions. They are usually much slower than the
dedicated logic circuits. Also, they cannot be used to implement
sequential logic owing to the absence of flip-flops. A read only memory
(ROM) is essentially a memory device that can be used to store a
certain fixed set of binary information. As outlined earlier, these devices
have certain inherent links that can be made or broken depending upon
the type of fusible link to store any user-specified binary information in
the device. While, in the case of a conventional fusible link, relevant
interconnections are broken to program the device, in the case of an
antifuse the relevant interconnections are made to do the same job. This

4

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

is illustrated in Fig.2. Figure 2(a) shows the internal logic diagram of a 4
×2 PROM. The figure shows an unprogrammed PROM. Figures 2 (b)
and (c) respectively show the use of a fuse and an antifuse to produce
output-1 = AB. Note that in the case of a fuse an unprogrammed
interconnection is a ‘make’ connection, whereas in the case of an
antifuse it is a ‘break’ connection. Once a given pattern is formed, it
remains as such even if power is turned off and on. In the case of
PROMs, the user can erase the data already stored on the ROM chip
and load it with fresh data. A PROM in general has n input lines and m
output lines and is designated as a PROM. Looking at the
internal architecture of a PROM device, it is a combinational circuit with
the AND gates wired as a decoder and having OR gates equal to the
number of outputs. A PROM with five input lines and four output lines,
for instance, would have the equivalent of a decoder at the input
that would generate 32 possible terms or product terms. Each of these
four OR gates would be a 32-input gate fed from 32 outputs of the
decoder through fusible links. Figure 3 shows the internal architecture of
a 32×4 PROM. We can see that the input side is hardwired to produce
all possible 32 product terms corresponding to five variables. All 32
product terms or minterms are available at the inputs of each of the OR
gates through programmable interconnections. This allows the users to
have four different five-variable Boolean functions of their choice. Very
complex combinational functions can be generated with PROMs by
suitably making or breaking these links. To sum up, for implementing an
n-input or n-variable, m-output combinational circuit, one would need a
 PROM. As an illustration, a PROM can be used to implement
the following Boolean function with two outputs given by the equations

 ∑

5

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

 ∑

Implementation of this Boolean function would require an 8×2 PROM.

The internal logic diagram of the PROM in this case, after it is
programmed, would be as shown in Fig.4. Note that, in the programmed
PROM of Fig.4, an unprogrammed interconnection indicated by a cross
(×) is a ‘make’ connection. It may be mentioned here that in practice a
PROM would not be used to implement as simple a Boolean function as
that illustrated above. The purpose here is to indicate to readers how a

A B C D

Figure 1 the internal architecture of a PROM

6

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

PROM implements a Boolean function. In actual practice, PROMs would
be used only in the case of very complex Boolean functions. Another
noteworthy point is that, when it comes to implementing Boolean
functions with PROMs, it is not economical to use PROM for those
Boolean functions that have a large number of ‘don’t care’ conditions.
In the case of a PROM, each ‘don’t care’ condition would have either
all 0s or all 1s. Other programmable logic devices such as a PLA or
PAL are more suitable in such situations.

Fig. 2

7

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

 Fig.3

8

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

Ex.1/Determine the size of the PROM required for implementing the
following logic circuits:

(a) a binary multiplier that multiplies two four-bit numbers;

(b) a dual 8-to-1 multiplexer with common selection inputs;

(c) a single-digit BCD adder/ subtractor with a control input for selection
of operation.

Fig.4

9

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

Sol./ (a) The number of inputs required here would be eight. The result
of multiplication would be in eight

bits. Therefore, the size of the PROM

(b) The number of inputs (the number of selection
inputs). The number of outputs

 . Therefore, the size of the PROM

(c) The number of inputs (carry-in)+1 (control input)=10.

The number of outputs (sum or subtraction output bits)+1 (carry or
borrow bit) . The size

of the PROM

 Programmable Logic Array

 A programmable logic array (PLA) enables logic functions expressed
in sum-of-products form to be implemented directly. It is similar in
concept to a PROM. However, unlike a PROM, the PLA does not
provide full decoding of the input variables and does not generate all
possible minterms. While a PROM has a fixed AND gate array at the
input and a programmable OR gate array at the output, a PLA device
has a programmable AND gate array at the input and a programmable
OR gate array at the output. In a PLA device, each of the product terms
of the given Boolean function is generated by an AND gate which can
be programmed to form the AND of any subset of inputs or their
complements. The product terms so produced can be summed up in an
array of programmable OR gates. Figure 5 shows the internal
architecture of a PLA device with four input lines, eight product lines and
four output lines. That is, the programmable AND gate array has eight

11

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

AND gates. Each of the AND gates here has eight inputs, corresponding
to four input variables and their complements. The input to each of the
AND gates can be programmed to be any of the possible 16
combinations of four input variables and their complements. Four OR
gates at the output can generate four different Boolean functions, each
having a maximum of eight minterms out of 16 minterms possible with
four variables. The logic diagram depicts the unprogrammed state of the
device. The internal architecture shown in Fig.5 can also be represented
by the schematic form of Fig.6. PLAs usually have inverters at the
output of OR gates to enable them to implement a given Boolean
function in either AND-OR or AND-OR-INVERT form. Figure7 shows a
generalized block schematic representation of a PLA device having n
inputs, m outputs and k product terms, with n, m and k respectively
representing the number of input variables, the number of OR gates and
the number of AND gates. The number of inputs to each OR gate and
each AND gate are k and 2n respectively. A PLA is specified in terms of
the number of inputs, the number of product terms and the number of
outputs. As is clear from the description given in the preceding
paragraph, the PLA would have a total of 2Kn+Km programmable
interconnections. A ROM with the same number of input and output
lines would have ×m programmable interconnections.

11

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

Fig. 5

Fig. 6

Fig. 7

12

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

Ex.2/ Show the logic arrangement of both a PROM and a PLA required
to implement a binary full adder.

Sol: The Boolean expressions for sum S and carry-out Co can be
written as follows:

S = ∑

Co= ∑

Figure 8 shows the implementation with an 8×2 PROM while figure 9
shows the representation of full adder using PLA

Fig. 8

Fig. 9

13

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

Ex.3/ Design a logic cct. that find the square root of a four bit input, if
the input has not the out is logic zero and produce a carry.

Sol:

0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 0 1
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 0 0 1
1 0 0 1 1 1 0
1 0 1 0 0 0 1
1 0 1 1 0 0 1
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 0 0 1

The Boolean expressions of the outputs are

 ̅ ̅ ̅
 ̅ ̅ ̅
 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅
 ̅ ̅ ̅ ̅ ̅ ̅ ̅

14

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

𝐴 𝐷 𝐶 𝐵

𝑦 𝑦 𝑐𝑜
Fig. 10

15

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

 Programmable Logic Array

Programmable array logic (PAL) architecture has a programmable AND
array at the input and a fixed OR array at the output. The OR array is
fixed and the AND outputs are equally divided between available OR
gates. Figure 11 shows the internal architecture of a PAL device that
has four input lines, an array of eight AND gates at the input and two
OR gates at the output, to introduce readers to the arrangement of
various building blocks inside a PAL device and allow them a
comparison between different programmable logic devices.

Fig. 11

16

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

Figure 12 shows the block schematic representation of the generalized
architecture of a PAL device.

Ex.3/ The T.T. below is the function table of a converter. Starting with
the Boolean expressions for the four outputs (P, Q, R, S), minimize
them using Karnaugh maps and then hardware-implement this converter
with a suitable PLD with PAL architecture.

Fig. 12

17

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

Sol: From the T.T. the expressions of the outputs variables are

These expressions can be simplified using K.M. to be written as

The PAL logic cct. is given in figure 13

 Generic Array Logic

A generic array logic (GAL) device is similar to a PAL device and was
invented by Lattice Semiconductor. It differs from a PAL device in that
the programmable AND array of a GAL device can be erased and
reprogrammed. Also, it has reprogrammable output logic. This feature
makes it particularly attractive at the device prototyping stage, as any
bugs in the logic can be corrected by reprogramming. A similar device
called PEEL (Programmable Electrically Erasable Logic) was introduced
by the International CMOS Technology.

18

Lecture five: Programmable
Logic Devices

Asst. Lec. Hussien

Yossif Radhi

Fig 13

