University Of Diyala
College Of Engineering
Computer Engineering Department

L ecture 3:

VHDL - Introduction

Digital system Design
Dr.Yasir Amer

10/19/2017 Computer Engineering Department



Introduction

Hardware description languages (HDL)
B Language to describe hardware

B Two popular languages

[0 VHDL: Very High Speed Integrated Circuits
Hardware Description Language
B Developed by DOD from 1983
B JEEE Standard 1076-1987/1993/200x
B Based on the ADA language

0 Verilog
B IEEE Standard 1364-1995/2001/2005
B Based on the C language

10/19/2017 Computer Engineering Department 2



Applications of HDL

Model and document digital systems

B Different levels of abstraction
[0 Behavioral, structural, etc.

Verify design
Synthesize circuits

B Convert from higher abstraction levels to
lower abstraction levels

10/19/2017 Computer Engineering Department 3



VHDL Models with Different
Architectures

/.lnﬂts\
Architecturs.

/th:tlnm\\
/ Bohavioxe\ \

/Structure\\

10/19/2017 Computer Engineering Department



Libraries and Packages

e Libraries provide a set of packages, components, and
functions that simplify the task of designing hardware

e Packages provide a collection of related data types and
subprograms

e The following is an example of the use of the ieee library and
its std_logic_1164 package:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

10/19/2017 Computer Engineering Department



Entities, Architectures, and
Configurations

e The structure of a VHDL design resembles the structure of a
modern, object-oriented software design

e All VHDL designs provide an external interface and an internal
implementation

e A VHDL design consists of entities, architectures, and
configurations

Entity

Architecture 1 Architecture n

Configuration 2

Y

Architecture 2

10/19/2017 Computer Engineering Department



Entities

e An entity is a specification of the design’s external interface

e Entity declarations specify the following:
1. The name of the entity

2. A set of generic declarations specifying instance-specific
parameters

3. A set of port declarations defining the inputs and outputs of the
hardware design

e Generic declarations and port declarations are optional

10/19/2017 Computer Engineering Department



Entity Declarations

e Entity declarations are specified as follows:

ENTITY entity_name IS

GENERIC (
generic_1_name : generic_1_type;
generic_2_name : generic_2_type;
generic_n_name : generic_n_type

) i

PORT (
port_1_name : port_1_dir port_1_type;
port_2_name : port_2_dir port_2_type;
port_n_name : port_n_dir port_n_type

) i
END entity_name;

10/19/2017 Computer Engineering Department



Example Entity Declaration

e The following is an example of an entity declaration for an
AND gate:

ENTITY andgate IS

PORT ( a : IN std_logic;
b : IN std_logic;
c : OUT std_logic );

END andgate;

NOTE:

In the PORT declaration, the
semi-colon is used as a
separator.

10/19/2017 Computer Engineering Department



Ports

e Port name choices:
— Consist of letters, digits, and/or underscores
— Always begin with a letter

— (Case insensitive

e Port direction choices: NOTE:
IN Input port
OUT Output port A buffer is an output that
o _ can be “read” by the
INOUT Bidirectional port architecture of the entity.

BUFFER Buffered output port

10/19/2017 Computer Engineering Department 10



Ports (cont.)

e IEEE standard 1164-1993 defines a package which provides a
set of data types that are useful for logic synthesis

— The external pins of a synthesizable design must use data types
specified in the std_logic_1164 package

— IEEE recommends the use of the following data types to
represent signals in a synthesizable system:

std_logic

std_logic_vector (<max> DOWNTO <min>)

10/19/2017 Computer Engineering Department 11



Architectures

An architecture is a specification of the design’s internal
implementation

Multiple architectures can be created for a particular entity

For example, you might wish to create several architectures
for a particular entity with each architecture optimized with
respect to a design goal:

— Performance
— Area
— Power Consumption

— Ease of Simulation

10/19/2017 Computer Engineering Department

12



Architecture Declarations

e Architecture declarations are specified as follows:

ARCHITECTURE architecture_name OF entity_name IS

BEGIN
—-— Insert VHDL statements to assign outputs to
—-— each of the output signals defined in the
—— entity declaration.

END architecture_name;

10/19/2017 Computer Engineering Department

13



Example Architecture Declaration

e The following is an example of an architecture declaration for
an AND gate:

ARCHITECTURE synthesisl OF andgate IS
BEGIN

c <= a AND b;
END synthesisl;

NOTE:

The keyword AND denotes
the use of an AND gate.

10/19/2017

Computer Engineering Department 14



Built-In Data Types

e VHDL supports a rich set of built-in data types as well as
user-defined data types

Data Type Characteristics
BIT Binary, Unresolved
BIT_VECTOR Binary, Unresolved, Array
INTEGER Binary, Unresolved, Array
REAL Floating Point

e Built-in data types work well for simulation but not so well for
synthesis

e Built-in data types are suitable for use inside an architecture
but should not be used for external pins

10/19/2017 Computer Engineering Department 15



Logical Operators

e VHDL supports the following logical operators:

AND NAND | NOT
OR NOR
XOR XNOR

e VHDL also supports the overloading of existing operators and
the creation of new operators using functions

10/19/2017 Computer Engineering Department



Other Operators

e VHDL supports the following relational operators:
= (Equal)
/= (Not Equal)
< (Less Than)
> (Greater Than)

e VHDL supports the following mathematical operators:

+ (Addition)

- (Subtraction)

*  (Multiplication)
/  (Division)

10/19/2017 Computer Engineering Department

17



Process Statements

e The keywords used for conditional assignments and selected
assignments differ from those used within a process:

Outside Processes Inside Processes

WHEN. .ELSE IF..ELSTIF..ELSE. .END TIF

WITH..SELECT. .WHEN CASE. .WHEN. .END CASE

e A selected assignment outside a process is functionally
equivalent to a case statement within a process

Processes can be used for combinational logic but most often,
processes encapsulate sequential logic

10/19/2017 Computer Engineering Department 18



Process Statements (cont.)

SIGNAL reset, clock, d, g :std_logic;

PROCESS (reset, clock)

—— reset and clock are in the sensitivity list to

—— indicate that they are important inputs to the process

BEGIN
—— IF keyword is only valid in a process
IF (reset = ’'0’) THEN
q <= 0;
ELSIF (clock’EVENT AND clock = ’1’) THEN
q <= d;
END IF;

END PROCESS;

The EVENT attribute is true if
an edge has been detected
on the corresponding signal.

NOTE:

This implements a D flip-flop
with an asynchronous active-
low reset signal.

10/19/2017 Computer Engineering Department

19



Input-Output specification of circuit

Example: my_ckt
B Inputs: A, B, C
B Outputs: X, Y

VHDL description:

— X
B— » my_ckt entity my ckt 1is
.Y port (
S —— A: in bit;
B: in bit;
S: in bit;
X: out bit;
Y: out bit);
end my ckt ;
10/19/2017 Computer Engineering Department 20



VHDL entity

[l entity @ ' DaItatg/pIes:
" | = In-built

port (

» User-defined

A: bit;
B: bit; name recommended
: .. = Example:
= ' :!‘t’ / = Circuit name: my_ckt
X: s b » Filename: my_ckt.vhd /
Y; ,‘ S R |

; Direction of port
\/

3 main types:
en ’@‘ " in’ Input

Port names or Note the absence of semicolon

A\ W7/

Signal names ;7 at the end of the last signal
and the presence at the end of

the closing bracket
10/19/2017 Computer Engineering vepdrument Z1



Built-in Datatypes

0 Scalar (single valued) signal types:

B bit

B boolean
B integer
m Examples:

O A: in bit;
[0 G: out boolean;
[0 K: out integer range -2**4 to 2**4-1;
[0 Aggregate (collection) signal types:
B bit vector: array of bits representing binary numbers
B signed: array of bits representing signed binary numbers
m Examples:
O D: in bit wvector (0 to 7);
O E: in bit:vector(7 downto 0) ;

[0 M: in signed (4 downto 0);
--signed 5 bit vector binary number

10/19/2017 Computer Engineering Department 22



User-defined datatype

Construct datatypes arbitrarily or
using built-in datatypes

Examples:

B type temperature is (high, medium, low);

B type byte is array(0 to 7) of bit;

10/19/2017 Computer Engineering Department

23



Functional specification

my_ ckt

Example:
B Behavior for output X:
OO0 WhenS =0 A
X<=A B—
0 WhenS =1
X<=B S___,
B Behavior for output Y:

0 When X =0and S =0
Y <="'1'

[0 Else
Y <=0’

10/19/2017 Computer Engineering Department

24



VHDL Architecture

O VHDL description (sequential behavior):
architecture arch name of my ckt is

begin
pl: process (A,B,S)

| begin

if (S='0’) then

X <= A;

else

X <= B;

end if;

Error: Signals defined as
if ((X = '0’) and (S = '0")) then<:l output ports can only be

Y <= ‘1’; driven and not read
else

Y <= ‘0’;

end if;

end process pl;
end;

10/19/2017 Computer Engineering Department 25



VHDL Architecture

architecture behav_seq of my ckt is

signal Xtmp: bit; <«—

Signals can only be
defined in this
place before the
begin keyword

begin
pl: process
begin
if (S='0’) then
Xtmp <= A;
else
Xtmp <= B;
end if;

if ((Xtmp = ‘0’) and (S = ‘0’

Y <= ‘1",
else

Y <= ‘0’;
end if;

X <= Xtmp;
end process pl;

General rule: Include all signals in
the sensitivity list of the process
which either appear in relational

)) th| comparisons or on the right side of
the assignment operator inside the
process construct.

In our example:

Xtmp and S occur in relational
comparisons

A, B and Xtmp occur on the right side of

the assignment operators

end;

10/19/2017 Computer Engineering Department 26




VHDL Architecture

O VHDL description (concurrent behavior):

architecture behav _conc of my ckt is

signal Xtmp: bit;

begin
Xtmp <= A when (S='0’') else
B;
Y <= ‘1’ when ((Xtmp = '0’) and (S = '0’)) else
\ 0 4 ;
X <= Xtmp;
end ;
10/19/2017 Computer Engineering Department 27



Signals vs Variables

Signals

B Signals follow the notion of ‘event scheduling’
B An event is characterized by a (time,value) pair
B Signal assignment example:

X <= Xtmp; mMeans

Schedule the assignment of the value of signal
Xtmp to signal X at (Current time + delta)

where delta: infinitesimal time unit used by
simulator for processing the signals

10/19/2017

Computer Engineering Department 28



Signals vs Variables

[0 Variables

B Variables do not have notion of ‘events’

B Variables can be defined and used only inside the
process block and some other special blocks.

B Variable declaration and assi

nment example:

process (..)

variable K : bit;*””’“”’—
begin

—-— Assign the value of sig

immediately

Variables can only
be defined and used
inside the process
construct and can
be defined only in

this place

K := L;

end process;

10/19/2017 Computer Engineering Department

29



About VHDL

]
[0 VHDL is not case sensitive

O VHDL is a free form language. You can write the whole
program on a single line.

-- This is a VHDL comment
entity my exor is -- one more comment

begin

end my exor;




my EXOR gate

-- This is my first VHDL program

library IEEE;
use IEEE.std logic_11l64.all;

entity declaration - describes the
boundaries of the object.

It defines the names of the ports, their
mode and their type.

entity my_exor is R
port (ipl : in std_logic;

ip2 : in std_logic;

opl : out std logic

) ;

end my exor;




my EXOR gate

library IEEE;
use IEEE.std logic_1164.all;

entity - defines the

entity my exor is < _
port (ipl : in std logic; Interface.
ip2 : in std logic;
opl : out std logic
) ; N Mode of the port :
end my_exor; e Direction of flow.
.......................................................... - It Can be
In, out or inout




my EXOR gate

library IEEE;

use IEEE.std logic_1164.all;

entity my exor is

entity - defines the

4
<«

interface.

port (ipl : in std logic;
ip2 : in std logic;
opl : out std logic «

) ; A

end my exor;

Mode of the port :

It can be
in, out or inout

std logic is the type of the
port.

Standard logic is defined
by the standard

IEEE 1164.

It is defined in the IEEE
library.

Any node of type std _logic
can take 9 different values.
‘0! , !1! , !H! , !L! , !Z! ,

!U! , !X! , !W! , !_!




my EXOR gate

library IEEE; S
use IEEE.std logic 1164.all;

Library : Collection of design
elements, type declarations, sub
programs, etc.

entity my exor is

port (ipl : in std logic;
ip2 : in std_logic;
opl : out std logic

) ;

end my exor;




my EXOR gate

library IEEE; <

<

use IEEE.std logic_1164.all;

entity my exor is

Library : Collection of design
elements, type declarations,sub
programs, etc.

4
<«

port (ipl : in std _logic;
ip2 : in std logic;
opl : out std logic <«

) ; A

end my exor;

entity - defines the
interface.

Mode of the port :
It can be
in, out or inout

std_logic is the type of the port

It is defined in the IEEE library.

Any node of type std_logic can take
9 different values.

‘0! , 71! , !H! , !L! , !Z! , !U’ , 7X! , !W! , !_!

architecture my exor beh of my exor is

begin

opl <= (ipl and (not ip2)) or

(ip2 and (not ipl)); <

end my exor beh;

The architecture describes the
behaviour (function),
Interconnections and the
relationship between different
inputs and outputs of the entity.




my EXOR gate

Library : Collection of design
elements, type declarations,

library IEEE;
use IEEE.std logic_1164.all;

sub programs, etc.

entity - defines the
interface.

entity my exor is <
port (ipl in std logic;
ip2 in std logic;
opl out std logic .

) ;

end my exor;

A
" Mode of the port :
It can be

in, out or inout

architecture my exor beh of my exor is
begin
opl <= (ipl and (not ip2)) or

(ip2 and (not ipl)); <

std_logic is the type of the port

It is defined in the IEEE library.

Any node of type std_logic can take
9 different value.

GO! , !1! , !H! , !L! , !Z! , !U! , !X! , !W! , !_!

The architecture describes the
behaviour(function), interconnections
and the relationship between different
inputsand outputs.

end my exor beh;

configuration my exor C of my exor is
for my exor beh
end for;

end my exor C;

The configuration is optional.

It defines the entity architecture
bindings.

More about configurations later.




Internal connections are made using signals.

Signals are defined inside the architecture.

architecture my exor beh of my exor is
signal templ : std logic;
signal temp2 : std logic;

begin

end my exor beh;

(]
—t=
k‘%
=
=

ip2

opl



my EXOR with internal

SHIAIS

use IEEE.std logic 1164.all;

entity my exor is

port (ipl : in std logic;
ip2 : in std logic;
opl : out std logic

) ;

end my exor;

architecture exor w_sig of my exor is
signal templ, temp2 : std logic;
begin
templ <= ipl and (not ip2);
temp2 <= ip2 and (not ipl);
opl <= templ or temp2;
end exor w_sig;

configuration my exor C of my exor is
for exor w_sig
end for;

end my exor C;

ip2

opl



Simulation

[0 Simulation is modeling the output
response of a circuit to given input

stimuli

my_ ckt

Y

[0 For our example circuit: A
B Given the values of A, Band S
B Determine the values of X and Y '
[0 Many types of simulators used S——
B Event driven simulator is used
popularly
B Simulation tool we shall use:
ModelSim

10/19/2017 Computer Engineering Department

39



Simulation

architecture behav seq of my ckt is Time |AIBI|S Xtmp Y XtmpVar X
signal Xtmp: bit; T
b l \ 4 \ 4 \ 4 \ 4
;g:nprocess (A,B,S,Xtmp) 0- Uluiu X X X X
variable XtmpVar: bit; V7 V7 AV V7
= 0 oli1lo] X |'X X X
i (5=0) then 01110
Xtmp <= A; 0+2d {010 0 1 0 0
else
Xtmp <= B; 1 O|11(1 0 1 0 0
end if;
1+d [0 |11 = 0 0 0
if ((Xtmp = ‘0’) and (S = ‘0’)) then
Y <= ‘17 ; 1+2d | 0| 1|1 1 0 0 1
else
ez;zf;o ; Scheduled events Scheduled events »
executed: list:
X <= Xtmp; _
XtmpVar := Xtmp; Xtmp = 0 (empty)
end process pl; Y =1
end; X =0 X = (07 ,0+2d)
Assignments executed:
10/19/2017 XtmpVar = 0 £ 40




Synthesis

Synthesis:
Conversion of behavioral level description
to structural level netlist

B Abstract behavioral description maps to concrete
logic-level implementation

B For ex. Integers at behavioral level mapped to
bits at structural level

Structural level netlist
B Implementation of behavioral description
B Describes interconnection of gates

Synthesis tool we shall use:
Leonardo Spectrum

10/19/2017 Computer Engineering Department 41



Structural level netlist

Behavior of our example
circuit: A— =
B Behavior for output X: B —
X<=A S —
0 WhenS =1
X<=B | -
B Behavior for output Y: 0 Logic functions
O When X =0and S =0 M Sbar=~S
Y<=1 B Xbar=~X
] Else B X = A*(Sbar) + B*S
Y<=0 m Y = (Xbar)*(Sbar)

10/19/2017 Computer Engineering Department 42



Structural level netlist

architecture behav _conc of my ckt is

-— component declarations

[0 Gate level VHDL

signal Sbar, Xbar, W1, W2: bit; descﬁpﬂons
_ (and, or, etc) are
begin described separately

Gl: not port map (Sbar,S);
G2: and port map (W1l ,A,Sbar);
G3: and port map(W2,B,S);
G4: or port map(X,Wl,W2);

O Design in which other
design descriptions are
included is called a
“hierarchical design”

G5: not port map (Xbar, X);

G6: and port map (Y,Xbar,Sbar) ; O A VHDL design is

included in current
design using port map

d ;
en statement

10/19/2017 Computer Engineering Department 43



Other VHDL resources

Design Recipes for FPGAs

VHDL Tutorial: Learn by Example
by Weijun Zhang

B http://esd.cs.ucr.edu/labs/tutorial/

10/19/2017 Computer Engineering Department

44


http://esd.cs.ucr.edu/labs/tutorial/



