
10/19/2017 Computer Engineering Department 1

Lecture 3:
VHDL - Introduction

Digital system Design

Dr.Yasir Amer

University Of Diyala
College Of Engineering
Computer Engineering Department

10/19/2017 Computer Engineering Department 2

Introduction

 Hardware description languages (HDL)
 Language to describe hardware

 Two popular languages
 VHDL: Very High Speed Integrated Circuits

Hardware Description Language
 Developed by DOD from 1983

 IEEE Standard 1076-1987/1993/200x

 Based on the ADA language

 Verilog
 IEEE Standard 1364-1995/2001/2005

 Based on the C language

10/19/2017 Computer Engineering Department 3

Applications of HDL

 Model and document digital systems

 Different levels of abstraction

 Behavioral, structural, etc.

 Verify design

 Synthesize circuits

 Convert from higher abstraction levels to
lower abstraction levels

VHDL Models with Different
Architectures

10/19/2017 Computer Engineering Department 4

10/19/2017 Computer Engineering Department 5

10/19/2017 Computer Engineering Department 6

10/19/2017 Computer Engineering Department 7

10/19/2017 Computer Engineering Department 8

10/19/2017 Computer Engineering Department 9

10/19/2017 Computer Engineering Department 10

10/19/2017 Computer Engineering Department 11

10/19/2017 Computer Engineering Department 12

10/19/2017 Computer Engineering Department 13

10/19/2017 Computer Engineering Department 14

10/19/2017 Computer Engineering Department 15

10/19/2017 Computer Engineering Department 16

v

10/19/2017 Computer Engineering Department 17

10/19/2017 Computer Engineering Department 18

10/19/2017 Computer Engineering Department 19

10/19/2017 Computer Engineering Department 20

Input-Output specification of circuit

my_ckt

A

B

S

X

Y

 Example: my_ckt

 Inputs: A, B, C

 Outputs: X, Y

 VHDL description:

entity my_ckt is

port (

 A: in bit;

 B: in bit;

 S: in bit;

 X: out bit;

 Y: out bit);

end my_ckt ;

10/19/2017 Computer Engineering Department 21

my_ckt

A

B

S

X

Y

VHDL entity

 entity my_ckt is

port (

 A: in bit;

 B: in bit;

 S: in bit;

 X: out bit;

 Y: out bit

);

end my_ckt;

 Name of the circuit
 User-defined
 Filename same as circuit

name
 Example.

 Circuit name: my_ckt
 Filename: my_ckt.vhd

Port names or
Signal names

 Name of the circuit
 User-defined
 Filename same as circuit

name recommended
 Example:

 Circuit name: my_ckt
 Filename: my_ckt.vhd

Datatypes:
 In-built
 User-defined

Direction of port
3 main types:
 in: Input
 out: Output
 inout: Bidirectional

Note the absence of semicolon
“;” at the end of the last signal
and the presence at the end of
the closing bracket

10/19/2017 Computer Engineering Department 22

Built-in Datatypes

 Scalar (single valued) signal types:
 bit

 boolean

 integer

 Examples:
 A: in bit;

 G: out boolean;

 K: out integer range -2**4 to 2**4-1;

 Aggregate (collection) signal types:
 bit_vector: array of bits representing binary numbers
 signed: array of bits representing signed binary numbers

 Examples:
 D: in bit_vector(0 to 7);

 E: in bit_vector(7 downto 0);

 M: in signed (4 downto 0);
--signed 5 bit_vector binary number

10/19/2017 Computer Engineering Department 23

User-defined datatype

 Construct datatypes arbitrarily or
using built-in datatypes

 Examples:
 type temperature is (high, medium, low);

 type byte is array(0 to 7) of bit;

10/19/2017 Computer Engineering Department 24

Functional specification

 Example:

 Behavior for output X:

 When S = 0
X <= A

 When S = 1
X <= B

 Behavior for output Y:

 When X = 0 and S =0
Y <= „1‟

 Else
Y <= „0‟

my_ckt

A

B

S

X

Y

10/19/2017 Computer Engineering Department 25

VHDL Architecture
 VHDL description (sequential behavior):

architecture arch_name of my_ckt is
begin
 p1: process (A,B,S)

 begin

 if (S=‘0’) then

 X <= A;

 else

 X <= B;

 end if;

 if ((X = ‘0’) and (S = ‘0’)) then

 Y <= ‘1’;

 else

 Y <= ‘0’;

 end if;

 end process p1;
end;

Error: Signals defined as
output ports can only be
driven and not read

10/19/2017 Computer Engineering Department 26

VHDL Architecture
architecture behav_seq of my_ckt is

 signal Xtmp: bit;

 begin
 p1: process (A,B,S,Xtmp)

 begin

 if (S=‘0’) then

 Xtmp <= A;

 else

 Xtmp <= B;

 end if;

 if ((Xtmp = ‘0’) and (S = ‘0’)) then

 Y <= ‘1’;

 else

 Y <= ‘0’;

 end if;

 X <= Xtmp;

 end process p1;

end;

Signals can only be
defined in this
place before the
begin keyword

General rule: Include all signals in
the sensitivity list of the process
which either appear in relational
comparisons or on the right side of
the assignment operator inside the
process construct.

In our example:
Xtmp and S occur in relational

comparisons
A, B and Xtmp occur on the right side of

the assignment operators

10/19/2017 Computer Engineering Department 27

VHDL Architecture

 VHDL description (concurrent behavior):

architecture behav_conc of my_ckt is

 signal Xtmp: bit;

begin

 Xtmp <= A when (S=‘0’) else

 B;

 Y <= ‘1’ when ((Xtmp = ‘0’) and (S = ‘0’)) else

 ‘0’;

 X <= Xtmp;

end ;

10/19/2017 Computer Engineering Department 28

Signals vs Variables

 Signals

 Signals follow the notion of „event scheduling‟

 An event is characterized by a (time,value) pair

 Signal assignment example:

X <= Xtmp; means

Schedule the assignment of the value of signal
Xtmp to signal X at (Current time + delta)

where delta: infinitesimal time unit used by
simulator for processing the signals

10/19/2017 Computer Engineering Department 29

Signals vs Variables

 Variables
 Variables do not have notion of „events‟
 Variables can be defined and used only inside the

process block and some other special blocks.

 Variable declaration and assignment example:
 process (…)

 variable K : bit;

 begin

 …

 -- Assign the value of signal L to var. K
immediately

 K := L;

 …

 end process;

Variables can only
be defined and used
inside the process

construct and can
be defined only in
this place

About VHDL

 VHDL is not case sensitive

 VHDL is a free form language. You can write the whole
program on a single line.

-- This is a VHDL comment

entity my_exor is -- one more comment

begin

...

end my_exor;

-- This is my first VHDL program

library IEEE;

use IEEE.std_logic_1164.all;

entity my_exor is

port (ip1 : in std_logic;

 ip2 : in std_logic;

 op1 : out std_logic

);

end my_exor;

entity declaration - describes the

boundaries of the object.

It defines the names of the ports, their

mode and their type.

my EXOR gate

library IEEE;

use IEEE.std_logic_1164.all;

entity my_exor is

port (ip1 : in std_logic;

 ip2 : in std_logic;

 op1 : out std_logic

);

end my_exor;

entity - defines the

interface.

Mode of the port :

Direction of flow.

It can be

in, out or inout

my EXOR gate

library IEEE;

use IEEE.std_logic_1164.all;

entity my_exor is

port (ip1 : in std_logic;

 ip2 : in std_logic;

 op1 : out std_logic

);

end my_exor;

entity - defines the

interface.

Mode of the port :

It can be

in, out or inout

std_logic is the type of the

port.

Standard logic is defined

by the standard

IEEE 1164.

It is defined in the IEEE

library.

Any node of type std_logic

can take 9 different values.

‘0’ , ’1’ , ’H’ , ’L’ , ’Z’ ,

’U’ , ’X’ , ’W’ , ’-’

my EXOR gate

library IEEE;

use IEEE.std_logic_1164.all;

entity my_exor is

port (ip1 : in std_logic;

 ip2 : in std_logic;

 op1 : out std_logic

);

end my_exor;

Library : Collection of design

elements, type declarations, sub

programs, etc.

my EXOR gate

library IEEE;

use IEEE.std_logic_1164.all;

entity my_exor is

port (ip1 : in std_logic;

 ip2 : in std_logic;

 op1 : out std_logic

);

end my_exor;

architecture my_exor_beh of my_exor is

begin

 op1 <= (ip1 and (not ip2)) or

 (ip2 and (not ip1));

end my_exor_beh;

Library : Collection of design

elements, type declarations,sub

programs, etc.

entity - defines the

interface.

Mode of the port :

It can be

in, out or inout

std_logic is the type of the port

It is defined in the IEEE library.

Any node of type std_logic can take

9 different values.

‘0’ , ’1’ , ’H’ , ’L’ , ’Z’ , ’U’ , ’X’ , ’W’ , ’-’

The architecture describes the

behaviour (function),

interconnections and the

relationship between different

inputs and outputs of the entity.

my EXOR gate

library IEEE;

use IEEE.std_logic_1164.all;

entity my_exor is

port (ip1 : in std_logic;

 ip2 : in std_logic;

 op1 : out std_logic

);

end my_exor;

architecture my_exor_beh of my_exor is

begin

 op1 <= (ip1 and (not ip2)) or

 (ip2 and (not ip1));

end my_exor_beh;

configuration my_exor_C of my_exor is

 for my_exor_beh

 end for;

end my_exor_C;

Library : Collection of design

elements, type declarations,

sub programs, etc.

entity - defines the

interface.

Mode of the port :

It can be

in, out or inout

std_logic is the type of the port

It is defined in the IEEE library.

Any node of type std_logic can take

9 different value.

‘0’ , ’1’ , ’H’ , ’L’ , ’Z’ , ’U’ , ’X’ , ’W’ , ’-’

The architecture describes the

behaviour(function), interconnections

and the relationship between different

inputsand outputs.

The configuration is optional.

It defines the entity architecture

bindings.

More about configurations later.

my EXOR gate

architecture my_exor_beh of my_exor is

 signal temp1 : std_logic;

 signal temp2 : std_logic;

begin

end my_exor_beh;

Internal connections are made using signals.

Signals are defined inside the architecture.

library IEEE;

use IEEE.std_logic_1164.all;

entity my_exor is

port (ip1 : in std_logic;

 ip2 : in std_logic;

 op1 : out std_logic

);

end my_exor;

architecture exor_w_sig of my_exor is

 signal temp1, temp2 : std_logic;

begin

 temp1 <= ip1 and (not ip2);

 temp2 <= ip2 and (not ip1);

 op1 <= temp1 or temp2;

end exor_w_sig;

configuration my_exor_C of my_exor is

 for exor_w_sig

 end for;

end my_exor_C;

my EXOR with internal
signals

10/19/2017 Computer Engineering Department 39

Simulation

 Simulation is modeling the output
response of a circuit to given input
stimuli

 For our example circuit:
 Given the values of A, B and S
 Determine the values of X and Y

 Many types of simulators used
 Event driven simulator is used

popularly
 Simulation tool we shall use:

ModelSim

my_ckt

A

B

S

X

Y

10/19/2017 Computer Engineering Department 40

Simulation
architecture behav_seq of my_ckt is

 signal Xtmp: bit;

 begin
 p1: process (A,B,S,Xtmp)

 variable XtmpVar: bit;

 begin

 if (S=‘0’) then

 Xtmp <= A;

 else

 Xtmp <= B;

 end if;

 if ((Xtmp = ‘0’) and (S = ‘0’)) then

 Y <= ‘1’;

 else

 Y <= ‘0’;

 end if;

 X <= Xtmp;

 XtmpVar := Xtmp;

 end process p1;

end;

Time
„T‟

A B S Xtmp Y XtmpVar X

0- U U U „X‟ „X‟ „X‟ „X‟

0 0 1 0 „X‟ „X‟ „X‟ „X‟

0+d 0 1 0 0 0 0 „X‟

0+2d 0 1 0 0 1 0 0

1 0 1 1 0 1 0 0

1+d 0 1 1 1 0 0 0

1+2d 0 1 1 1 0 0 1

Scheduled events

list:

Xtmp = (0,0+d)

Y = (0,0+d)

X = (‘X’,0+d)

Assignments executed:

XtmpVar = ‘X’

Scheduled events

executed:

Xtmp = 0

Y = 0

X = ‘X’

Assignments executed:

XtmpVar = 0

Scheduled events

list:

Xtmp = (0,0+2d)

Y = (1,0+2d)

X = (‘0’,0+2d)

Scheduled events

executed:

Xtmp = 0

Y = 1

X = 0

Scheduled events

list:

(empty)

10/19/2017 Computer Engineering Department 41

Synthesis

 Synthesis:
Conversion of behavioral level description
to structural level netlist
 Abstract behavioral description maps to concrete

logic-level implementation
 For ex. Integers at behavioral level mapped to

bits at structural level

 Structural level netlist
 Implementation of behavioral description
 Describes interconnection of gates

 Synthesis tool we shall use:
Leonardo Spectrum

10/19/2017 Computer Engineering Department 42

Structural level netlist

 Behavior of our example
circuit:
 Behavior for output X:

 When S = 0
X <= A

 When S = 1
X <= B

 Behavior for output Y:

 When X = 0 and S =0
Y <= 1

 Else
Y <= 0

my_ckt

A

B

S

X

Y

 Logic functions

 Sbar = ~ S

 Xbar = ~ X

 X = A*(Sbar) + B*S

 Y = (Xbar)*(Sbar)

10/19/2017 Computer Engineering Department 43

Structural level netlist
architecture behav_conc of my_ckt is

-- component declarations

 signal Sbar, Xbar, W1, W2: bit;

begin

 G1: not port map(Sbar,S);

 G2: and port map(W1,A,Sbar);

 G3: and port map(W2,B,S);

 G4: or port map(X,W1,W2);

 G5: not port map(Xbar,X);

 G6: and port map(Y,Xbar,Sbar);

end ;

 Gate level VHDL
descriptions
(and, or, etc) are
described separately

 Design in which other
design descriptions are
included is called a
“hierarchical design”

 A VHDL design is
included in current
design using port map
statement

10/19/2017 Computer Engineering Department 44

Other VHDL resources

 Design Recipes for FPGAs

 VHDL Tutorial: Learn by Example
by Weijun Zhang

 http://esd.cs.ucr.edu/labs/tutorial/

http://esd.cs.ucr.edu/labs/tutorial/

