
Modeling Sequential Logic in VHDL

University Of Diyala

College Of Engineering

Computer Engineering Department

Dr. Yasir Amer Abbas

Third stage

2017

1

IN THIS LECTURE

 Synchronous sequential logic circuits rely on storage

elements for their operations.

 Flips-flops (FFs) and latches are two commonly

used one-bit elements.

 Others as registers, shift registers, and counters.

 Only synchronous sequential logic is considered.

2

 A latch is a level-sensitive memory device (transparent).

 As long as the pulse remains at the active high

level, any changes in the data input will change the

state of the latch.

 A flip-flop (FF) is an edge-triggered memory device.

 An edge-triggered FF ignores the pulse while it is at

a constant level (non-transparent).

 Triggers only during a transition of the clock signal.

 Could on the positive edge of the clock (posedge),

or negative edge (negedge).

LATCHES & FLIP-FLOPS

3

D Latch

⋅ A latch is inferred because the IF statement is incomplete.

⋅ The notion of implied memory is instantiated in this case.

…

always (S or Data_In)

if (S)

Data_out = Data_In;

…..

SIMPLE LATCH

4

SIMPLE LATCH
library ieee ;

use ieee.std_logic_1164.all;

entity D_latch is

 port(

 data_in: in std_logic;

 enable: in std_logic;

 data_out: out std_logic);

end D_latch;

 architecture behv of D_latch is

 begin -- compare this to D flipflop

 process(data_in, enable)

 begin

 if (enable='1') then -- no clock signal here

 data_out <= data_in;

 end if;

 end process;

end behv;
5

BASIC POSITIVE-EDGE TRIGGERED D FLIP-FLOP

6

FLIP-FLOP IS THE BASIC COMPONENT

library ieee ;

use ieee.std_logic_1164.all;

entity dff is

port(

 data_in: in std_logic;

 clock: in std_logic;

 data_out: out std_logic);

end dff;

Architecture behv of dff is

 begin

 process(data_in, clock) .

 begin -- clock rising edge

 if (clock='1' and clock'event) then

 data_out <= data_in;

 end if;

end process;

end behv;

7

VHDL CODE FOR RISING EDGE D FLIP FLOP

Library IEEE;

USE IEEE.Std_logic_1164.all;

entity RisingEdge_DFlipFlop is

port(

 Q : out std_logic;

 Clk :in std_logic;

 D :in std_logic);

end RisingEdge_DFlipFlop;

Architecture Behavioral of RisingEdge_DFlipFlop is

begin

 process(Clk)

 begin

 if(rising_edge(Clk)) then

 Q <= D;

 end if;

 end process;

 end Behavioral;

8

VHDL CODE FOR RISING EDGE D FLIP-FLOP WITH SYNCHRONOUS RESET

Library IEEE;

USE IEEE.Std_logic_1164.all;

entity RisingEdge_DFlipFlop_SyncReset is

port(

 Q : out std_logic;

 Clk :in std_logic;

 sync_reset: in std_logic;

 D :in std_logic);

end RisingEdge_DFlipFlop_SyncReset;

Architecture Behavioral of RisingEdge_DFlipFlop_SyncReset is

 begin

 process(Clk)

 begin

 if(rising_edge(Clk)) then

 if(sync_reset='1') then

 Q <= '0';

 else Q <= D;

 end if;

 end if;

 end process;

end Behavioral;
9

VHDL CODE FOR RISING EDGE D FLIP-FLOP WITH ASYNCHRONOUS

RESET HIGH LEVEL

Library IEEE;

USE IEEE.Std_logic_1164.all;

 entity RisingEdge_DFlipFlop_AsyncResetHigh is

 port(

 Q : out std_logic;

 Clk :in std_logic;

 Async_reset: in std_logic;

 D :in std_logic);

end RisingEdge_DFlipFlop_AsyncResetHigh;

Architecture Behavioral of RisingEdge_DFlipFlop_AsyncResetHigh is

begin

process(Clk, Async_reset) .

 begin

 if(Async_reset='1') then Q <= '0';

 elsif(rising_edge(Clk)) then

 Q <= D;

 end if;

 end process;

end Behavioral;

10

N-BIT REGISTER
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ckt_reg is

 generic (pattern : natural := 4);

Port (clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 loadEn : in STD_LOGIC;

 reg _in : in STD_LOGIC_VECTOR (regCount-1 downto 0);

 reg _out : out STD_LOGIC_VECTOR (regCount-1 downto 0));

end ckt_reg ;

architecture Behavioral of ckt_reg is

begin

 process (clk, rst)

 begin

 if rst = '1' then

 reg _out <= '0';

 elsif clk'event and clk = '1' then

 if loadEn = '1' then

 reg _out <= reg_in;

 end if;

 end if;

 end process;

end Behavioral;

11

SIMULATION N BIT REGISTER

12

PARALLEL IN – PARALLEL OUT SHIFT REGISTERS

library ieee;

use ieee.std_logic_1164.all;

entity pipo is

 port(

 clk : in std_logic;

 D: in std_logic_vector(3 downto 0);

 Q: out std_logic_vector(3 downto 0)

);

 end pipo;

architecture arch of pipo is

begin

 process (clk)

 begin

 if (CLK'event and CLK='1') then

 Q <= D;

 end if;

 end process;

end arch;

13

H.W: DESIGN FLIP-FLOP WITH A TRI-STATE

OUTPUT USING VHDL CODE

14

SHIFT REGISTER
library ieee ;

 use ieee.std_logic_1164.all;

entity shift_reg is

 port(

 I: in std_logic;

 clock: in std_logic;

 shift: in std_logic;

 Q: out std_logic);

 end shift_reg;

Architecture behv of shift_reg is -- initialize the declared signal

 signal S: std_logic_vector(2 downto 0):="111";

 begin

 process(I, clock, shift, S)

 begin -- everything happens upon the clock changing

 if clock'event and clock='1' then

 if shift = '1' then

 S <= I & S(2 downto 1);

 end if;

 end if;

 end process; -- concurrent assignment

 Q <= S(0);

 end behv;

15

SIMULATION WAVEFORM SHIFT REGISTER

16

COUNTER
library ieee ;

use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all;

--

entity counter is

generic(n: natural :=2);

 port(

clock: in std_logic;

 clear: in std_logic;

 count: in std_logic;

 Q: out std_logic_vector(n-1 downto 0));

 end counter;

--

architecture behv of counter is

signal Pre_Q: std_logic_vector(n-1 downto 0);

begin -- behavior describe the counter

process(clock, count, clear)

begin

if clear = '1' then Pre_Q <= Pre_Q - Pre_Q;

elsif (clock='1' and clock'event) then

if count = '1' then Pre_Q <= Pre_Q + 1;

 end if;

end if;

 end process; -- concurrent assignment statement

Q <= Pre_Q;

end behv;

17

COUNTER

18

⋅ A circuit type with memory.

⋅ Usually as datapath controller unit.

⋅ Via algorithmic state machine (ASM) flowchart, an FSM is readily

modeled in HDL.

⋅ There are two basic models of FSMs: Moore and Mealy.

⋅ In a Mealy machine, the next state (NS) and the outputs depend

on both the present state (PS) and the inputs.

⋅ The NS of a Moore machine depends on the PS and the inputs, but

the outputs depend on only the PS.

⋅ All FSMs have the general feedback structure.

⋅ We will deal only with synchronous FSMs, hence the state

transitions of the machine are synchronized by the active edge of a

common clock.

In this case, the state register is consisted of edge triggered flip-

flops.

Finite State Machine (FSM)

19

