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Binary Search Trees 

This section discusses a special type of binary tree, called a binary search tree. 

 

Suppose that we want to determine whether 50 is in the binary tree. To do so, we can use any 

of the previous algorithms (in order, pre order, post order) to visit each node and compare the 

search item with the data stored in the node. However, this could require us to traverse a large 

part of the binary tree, so the search would be slow. We need to visit each node in the binary 

tree until either the item is found or we have traversed the entire binary tree because no criteria 

exist to guide our search. This case is like an arbitrary linked list where we must start our 

search at the first node, and continue looking at each node until either the item is found or the 

entire list is searched. 
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In the binary tree in Figure 11-7, the data in each node is 

• Larger than the data in its left sub tree 

• Smaller than the data in its right sub tree 

 

The binary tree in Figure 11-7 has some structure. Suppose that we want to determine whether 

58 is in this binary tree. As before, we must start our search at the root node. We compare 58 

with the data in the root node; that is, we compare 58 with 60. Because 58 ≠ 60 and 58 < 60, 

it is guaranteed that 58 will not be in the right sub tree of the root node. Therefore, if 58 is in 

the binary tree, it must be in the left sub tree of the root node. We follow the left pointer of 

the root node and go to the node with info 50.We now apply the same criteria at this node.  

Because 58 > 50, we must follow the right pointer of this node and go to the node with info 

58. At this node we find item 58. This example shows that every time we move down to a 

child, we eliminate one of the sub trees of the node from our search. If the binary tree is nicely 

constructed, the search is very similar to the binary search on arrays. 

The binary tree given in Figure 11-7 is a special type of binary tree, called a binary search 

tree. (In the following definition, by the term key of the node we mean the key of the data 

item that uniquely identifies the item.) 

 

Definition: A binary search tree, T, is either empty or the following is true: 

         i. T has a special node called the root node. 

         ii. T has two sets of nodes, LT and RT, called the left sub tree and right 

             sub tree of T, respectively. 

          iii. The key in the root node is larger than every key in the left sub tree 

                and smaller than every key in the right sub tree. 

          iv. LT and RT are binary search trees. 

 

The following operations are typically performed on a binary search tree: 

• Search the binary search tree for a particular item. 

• Insert an item in the binary search tree. 
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• Delete an item from the binary search tree. 

• Find the height of the binary search tree. 

• Find the number of nodes in the binary search tree. 

• Find the number of leaves in the binary search tree. 

• Traverse the binary search tree. 

• Copy the binary search tree. 

 

Clearly, every binary search tree is a binary tree. To do inorder, preorder, and postorder 

traversals of a binary search tree are the same as those for a binary tree.  

 

 

Search 

The function search searches the binary search tree for a given item. If the item is found in 

the binary search tree, it returns true; otherwise, it returns false. Because the pointer root 

points to the root node of the binary search tree, we must begin our search at the root node. 

Furthermore, because root must always point to the root node, we need a pointer, say current, 

to traverse the binary search tree. The pointer current is initialized to root. 

If the binary search tree is nonempty, we first compare the search item with the info in the 

root node. If they are the same, we stop the search and return true. Otherwise, if the search 

item is smaller than the info in the node, we follow left to go to the left sub tree; otherwise, 

we follow right to go to the right sub tree. We repeat this process for the next node. If the 

search item is in the binary search tree, our search ends at the node containing the search item; 

otherwise, the search ends at an empty sub tree. Thus, the general algorithm is as follows: 

 

if(root == NULL) 

{          

       Cout<<” Cannot search an empty tree” ; 

       return; 

} 
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else 

{ 

          current = root; 

          while (current != NULL && current->info != the element) 

          { 

 if(current->info > the element) 

                      current = current -> left; 

                 else 

                      current = current -> right; 

          } 

          if (current->info == the element) 

                cout<< “found the element”; 

                return; 

         else 

               cout<<”the element does not exit”  

               return 

} 

 

Insert 

After inserting an item in a binary search tree, the resulting binary tree must also be a binary 

search tree. To insert a new item, first we search the binary search tree and find the place 

where the new item is to be inserted. Here we traverse the binary search tree with two 

pointers—a pointer, say current, to check the current node and a pointer, say trailCurrent, 

pointing to the parent of current. Because duplicate items are not allowed, our search must 

end at an empty sub tree. We can then use the pointer trailCurrent to insert the new item at 

the proper place. The item to be inserted, insertItem, is passed as a parameter to the function 

insert. The general algorithm is as follows: 

 

a.     Create a new node and copy insertItem into the new node. Also set left and right 

of the new node to NULL. 
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b.    if the root is NULL, the tree is empty so make root point to the new node. 

else 

{ 

         current = root; 

         while (current != NULL)          //search the binary tree 

         { 

                 trailCurrent = current; 

                 if (current->info == the insertItem) 

                          cout<<”  Error: Cannot insert duplicate”; 

                            exit 

                 else if(current->info > insertItem) 

                            current = current->left; 

                 else 

                            current = current->right; 

         } 

 

        //insert the new node in the binary tree 

 

        if (trailCurrent->info > insertItem) 

            trailCurrent->left = newnode  ( make the new node the left child of 

trailCurrent) 

        else 

                      trailCurrent->right = newnode ( make the new node the right child of 

trailCurrent) 

} 

 

Delete 

As before, first we search the binary search tree to find the node to be deleted. To 

help you better understand the delete operation, let us consider the binary search tree given in 

Figure 11-8. 
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After deleting the desired item (if it exists in the binary search tree), the resulting tree must 

be a binary search tree. The delete operation has four cases, as follows: 

 

Case 1: The node to be deleted has no left and right sub trees; that is, the node to be deleted 

is a leaf. For example, the node with info 45 is a leaf. 

 

Case 2: The node to be deleted has no left sub tree; that is, the left sub tree is empty, but it 

has a nonempty right sub tree. For example, the left sub tree of node with info 40 is empty 

and its right sub tree is nonempty. 

 

Case 3: The node to be deleted has no right sub tree; that is, the right sub tree is empty, but it 

has a nonempty left sub tree. For example, the left sub tree of node with info 80 is empty and 

its right sub tree is nonempty. 

 

Case 4: The node to be deleted has nonempty left and right sub trees. For example, the left 

and the right sub trees of node with info 50 are nonempty. 
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Case 1: Suppose that we want to delete 45 from the binary search tree in Figure 11-8. We 

search the binary tree and arrive at the node containing 45. Because this node is a leaf and is 

the left child of its parent, we can simply set the llink of the parent node to NULL and 

deallocate the memory occupied by this node. After deleting this node, Figure 11-9(a) shows 

the resulting binary search tree. 

 

Case 2: Suppose that we want to delete 30 from the binary search tree in Figure 11-8. In this 

case, the node to be deleted has no left sub tree. Because 30 is the left child of its parent node, 
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we make the llink of the parent node point to the right child of 30 and then deallocate the 

memory occupied by 30. Figure 11-9(b) shows the resulting binary tree. 

 

Case 3: Suppose that we want to delete 80 from the binary search tree of Figure 11-8. The 

node containing 80 has no right child and is the right child of its parent. Thus, we make the 

rlink of the parent of 80—that is, 70—point to the left child of 80. Figure 11-9(c) shows the 

resulting binary tree. 

 

Case 4: Suppose that we want to delete 50 from the binary search tree in  

Figure 11-8. The node with info 50 has a nonempty left sub tree and a nonempty right sub 

tree. Here, we first reduce this case to either Case 2 or Case 3 as follows. To be specific, 

suppose that we reduce it to Case 3—that is, the node to be deleted has no right sub tree. For 

this case, we find the immediate predecessor of 50 in this binary tree, which is 48. This is 

done by first going to the left child of 50 and then locating the rightmost node of the left sub 

tree of 50. To do so, we follow the rlink of the nodes. Because the binary search tree is finite, 

we eventually arrive at a node that has no right sub tree. Next, we swap the info in the node 

to be deleted with the info of its immediate predecessor. In this case, we swap 48 with 50. 

This reduces to the case wherein the node to be deleted has no right sub tree. We now apply 

Case 3 to delete the node. (Note that because we will delete the immediate predecessor from 

the binary tree, we, in fact, copy only the info of the immediate predecessor into the node to 

be deleted.) After deleting 50 from the binary search tree in Figure 11-8, the resulting binary 

tree is as shown in Figure 11-9(d). 

 

In each case, we see that the resulting binary tree is again a binary search tree. 

From this discussion, it follows that to delete an item from a binary search tree, we must do 

the following: 

         1. Find the node containing the item (if any) to be deleted. 

         2. Delete the node. 


