College of Engineering Computer System Architectures

Computer System Architectures

BASIC COMPUTER ORGANIZATION AND DESIGN

System Buses:
« The major computer system components (processor, main memory, I/0O modules)
need to be interconnected in order to exchange data and control signals
« A bus is a communication pathway connecting two or more devices
» A bus that connects major computer components (processor, memory, 1/0O) is called a
system bus.
* Bus = a shared transmission medium. Only one device at a time can successfully
transmit.
= shared system bus consisting of multiple lines
= A hierarchy of buses to improve performance.
Key design elements for buses include: Arbitration, Timing, width

Multiple Bus Hierarchies:
» In general, the more devices attached to the bus, the greater the bus length and hence
the greater the propagation delay.
» The bus may become a bottleneck as the aggregate data transfer demand approaches
the capacity of the bus.

Synchronous Buses:

« Synchronous buses include a clock line between the control lines, line that is
controlled by a clock quartz oscillator, usually between 5 - 133 MHz

« All the transfers on the system bus have a fixed protocol related to the clock signal,
and it is developed along an integer number of cycles, called bus cycles.

« The advantages of a synchronous bus are a high speed of transfer, the very simple
implied logic

« The disadvantage comes from transfers that can be shorter than the time
corresponding to the integer number of bus cycles.

Introduction of Basic Computer:
« Every different processor type has its own design (different registers, buses,
Microoperations, machine instructions, etc)
« Modern processor is a very complex device
» It contains
= Many registers
= Multiple arithmetic units, for both integer and floating point calculations
= The ability to pipeline several consecutive instructions to speed execution etc.
= However, to understand how processors work, we will start with a simplified
processor model
= This is similar to what real processors were like ~25 years ago
= M. Morris Mano introduces a simple processor model he calls the Basic
Computer
= We will use this to introduce processor organization and the relationship of the
RTL model to the higher level computer processor.

College of Engineering Computer System Architectures

« The Basic Computer has two components, a processor and memory
* The memory has 4096 words in it

= 4096 = 2", so it takes 12 bits to select a word in memory
» Each word is 16 bits long.

CPU RAM

15 0

4095

Instructions:

* Program
= A sequence of (machine) instructions
« (Machine) Instruction
= A group of bits that tell the computer to perform a specific operation (a
sequence of micro-operation)
« The instructions of a program, along with any needed data are stored in memory
« The CPU reads the next instruction from memory
» Itis placed in an Instruction Register (IR)
« Control circuitry in control unit then translates the instruction into the sequence of
Microoperations necessary to implement it.

Stored program organization

Memory
4096 x 16

15 12 11 0

l Opcode I Address Instructions
(program)

Instruction format

; Operands
Binary operand (data)

Processor register
(accumulator or AC)

College of Engineering Computer System Architectures

Instruction Format:

A computer instruction is often divided into two parts
= An opcode (Operation Code) that specifies the operation for that instruction
= An address that specifies the registers and/or locations in memory to use for

that operation

« In the Basic Computer, since the memory contains 4096 (= 2*) words, we needs 12
bit to specify which memory address this instruction will use

* In the Basic Computer, bit 15 of the instruction specifies the addressing mode (O:
direct addressing, 1: indirect addressing)

» Since the memory words, and hence the instructions, are 16 bits long, that leaves 3

bits for the instruction’s opcode.

Instruction Format

15 14 12 11 0
[1|Opcode | Address |

Addressing
mode

Addressing Modes:

The address field of an instruction can represent either
= Direct address: the address in memory of the data to use (the address of the operand),

or
= Indirect address: the address in memory of the address in memory of the data to use.

- -

Direct addressing Indirect addressing
22 | 0] ADD | 457 35 |1]ADD | 300
300 1350
457 Operand
1350 Operand
_— T— ——
+i i
| AC | | AC |
| | I

Effective Address (EA)
= The address, which can be directly used without modification to access an operand for

a computation-type instruction, or as the target address for a branch-type instruction.

Processor Registers:
« A processor has many registers to hold instructions, addresses, data, etc

» The processor has a register, the Program Counter (PC) that holds the memory
address of the next instruction to get

College of Engineering Computer System Architectures

= Since the memory in the Basic Computer only has 4096 locations, the PC only
needs 12 bits,
» Inadirect or indirect addressing, the processor needs to keep track of what locations
in memory it is addressing: The Address Register (AR) is used for this
= The AR is a 12 bit register in the Basic Computer,
« When an operand is found, using either direct or indirect addressing, it is placed in the
Data Register (DR). The processor then uses this value as data for its operation
« The Basic Computer has a single general purpose register — the Accumulator (AC).

« The significance of a general purpose register is that it can be referred to in
instructions
= e.g. load AC with the contents of a specific memory location; store the
contents of AC into a specified memory location
« Often a processor will need a scratch register to store intermediate results or other
temporary data; in the Basic Computer this is the Temporary Register (TR)
« The Basic Computer uses a very simple model of input/output (1/0) operations
= Input devices are considered to send 8 bits of character data to the processor
= The processor can send 8 bits of character data to output devices
» The Input Register (INPR) holds an 8 bit character gotten from an input device
« The Output Register (OUTR) holds an 8 bit character to be sent to an output device.

Basic computer registers and memory

11 0

11 0
Memory
4096 words

15 0 16 bits per word
STy agamann |
15 0 15 0
il R | il DR |
7 0 7 0 15 0
[ourr | | mer | I AC |

List of Register for the basic computer

Register Number

symbol of bits Register name Function

DR 16 Data register Holds memory operand

AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character

College of Engineering

Common Bus System:

Computer System Architectures

The registers in the Basic Computer are connected using a bus.
This gives a savings in circuitry over complete connections between registers.

—
gz Bus
> Memory unit ™7
4096 X 16 -
I T Address
Write Read
| AR | -1
LD INR CLR
| | |
LD INR CLR
-| DR .| 3
| T | | I
LD INR CLR
L. —
| ALU '—v—IIEI AC ?_I -4
] 1 |
[LD INR CLR
I INPR |
| IR Al 5
LD —
> TR o —1—>|6
| | | | I
LD INR CLR
I@ Clock
L
— 16-bit commonbus +——m
o | INPR_|
Memory [—Virite
4096 x 16
Address Ew
AC
LI C
] 0
Lic | '?R ‘ | IR Lic
AR OUTR LD
KR o

16-bit Common Bus

College of Engineering Computer System Architectures

« Three control lines, S, S;, and Sy control which register the bus selects as its input:

Register

$251 S,

0 00| x
001 AR
010 PC
011 DR
10 0| AC
101 IR

11 0] TR
111 Memory

» Either one of the registers will have its load signal activated, or the memory will have
its read signal activated
= Will determine where the data from the bus gets loaded
* The 12-bit registers, AR and PC, have 0’s loaded onto the bus in the high order 4 bit
positions
When the 8-bit register OUTR is loaded from the bus, the data comes from the low
order 8 bits on the bus.

Basic Computer Instruction Format:

Memory-Reference Instructions (OP-code =000 ~ 110)

15 14 1211 0
| 1 | opcode | Address |

Register-Reference Instructions (OP-code=111,1=0)

15 1211 0

[0 1 1 1 | Registeroperation]
Input-Output Instructions (OP-code =111,1=1)

15 12 11 0

[1 1 1 1] 110 operation |

A computer should have a set of instructions so that the user can construct machine language
programs to evaluate any function that is known to be computable.

Instruction Types:
e Functional Instructions
- Arithmetic, logic, and shift instructions
- ADD, CMA, INC, CIR, CIL, AND, CLA
e Transfer Instructions
- Data transfers between the main memory and the processor registers
- LDA, STA
e Control Instructions
- Program sequencing and control
- BUN, BSA, ISZ
¢ Input/output Instructions
- Input and output
- INP, OUT.

College of Engineering Computer System Architectures

Basic Computer Instructions

Hexadecimal code

Symbol =0 [I=1 Description

AND Oxxx 8xxx AND memory word to AC
ADD Doxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load memory word to AC

STA oo Bxxx Store content of AC in memory
BUN 4xxx Cox Branch unconditionally

BSA Sxo0x Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

I0F F040 Interrupt off

« Control unit (CU) of a processor translates from machine instructions to the control
signals for the Microoperations that implement them
« Control units are implemented in one of two ways
» Hardwired Control
= CU is made up of sequential and combinational circuits to generate the control
signals
« Microprogrammed Control
= A control memory on the processor contains Micro-programs that activate the
necessary control signals
= We will consider a hardwired implementation of the control unit for the Basic
Computer

College of Engineering Computer System Architectures

Hardwired/Microprogrammed:

Status Status Control storage
information information address register
Control signals Control signals \I

|
tittt pitHt W
State register IM'rcroins"Iruction regist‘erl I Al |
t t
— Control storage |D-%
(a) Hardwired control (b) Microprogrammed control

Timing and Control:

Control unit of basic computer

Instruction register (IR)
[15] 14 13 12] 11-0]

Other inputs

..

A vy v

Ix8
decoder
76543210
v | Do
1 ‘*‘*‘* Combinational .
D7 Control e c.°“t'|°|
logic : signals
T15
I_TU_-
15 14210
4 x16
decoder
t1t1
4-bit - Increment (INR)

sequence |4—— Clear (CLR)
counter
(SC) <]+——— Clock

Timing Signals:

Generated by 4-bit sequence counter and 4x16 decoder
- The SC can be incremented or cleared.
- Example: TO,T1,T2,T3,T4,T0,T1,...
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

College of Engineering Computer System Architectures

D3T4: SC«0

TO T1 T2 T3 T4 TQ

T2

T3 \
Ta \

D3

CLR _\ \

SC

Instruction Cycle:

» In Basic Computer, a machine instruction is executed in the following cycle:
— Fetch an instruction from memory.
— Decode the instruction.
— Read the effective address from memory if the instruction has an indirect
address.
— Execute the instruction.
— After an instruction is executed, the cycle starts again at step 1, for the next
instruction.
» Note: Every different processor has its own (different) instruction cycle

Fetch and Decode:
To: AR« PC

T;: IR<MJ[AR], PC<PC +1
T;: D, ..., D;<—Decode IR(12-14), AR «IR(0-11), I<IR(15)

College of Engineering Computer System Architectures

™

S;
TO 3 s, Bus
S

. 0

Memory 7
unit -
Address
Read
L
o AR |

AR 1

D
Jl PC i II 2
'3} INR
N IR |

LD i Clock

Common bus

[4)]

Determine the Type Of Instruction:

D; IT5:
D;I'Ts:
D7I'T3:

D7 ITg:

Start
SC«0
1 r
AR « PC
T,
| IR~ MI[AR], PC~PC+1 l
T3
Decode operation code in /R (12 - 14)
AR « IR (0-11), I « IR (15)
(Registeror 1/0) =1 =0 (Memory-reference)
' év/
I0) =1 =0 (register) (indirect) = *: 0 (direct)
O G
T T T3 T3
Execute Execute IM - MMR]I Nothing]
input-output register-refi
instruction instruction
SC«0 SC«0
Execute
memory-reference
instruction
SCe0
AR < MI[AR]

Nothing
Execute a register-reference instruction
Execute an input-output instruction

10

College of Engineering Computer System Architectures

Register Reference Instructions:

Register Reference Instructions are identified when
-D;=1,1=0

- Register Ref. Instr. is specified in by ~ by; of IR
- Execution starts with timing signal T3

r=D; I'T3 => Register Reference Instruction
Bi = IR(i), i=0,1,2,...,11

D+I'T; = r (common to all register-reference instructions)
IR(i) = B; [bit in IR(0-11) that specifies the operation]

r: SC«0 Clear SC
CLA 7rB;;: AC<0 Clear AC
CLE 1By E<0 __ Clear E
CMA rB;: AC<AC Complement AC
CME rBy: E<E Complement E

CIR By AC<shr AC, AC(15)«—E, E< AC(0) Circulate right
CIL rBs: AC<shl AC, AC(0)<E, E<AC(15) Circulate left
INC 7rB;: AC<AC+1 Increment AC
SPA rBys If (AC(15) = 0) then (PC«PC + 1) Skip if positive
SNA rB;: If (AC(15) = 1) then (PC < PC + 1) Skip if negative

SZA rB;: If (AC =0) then PC«PC + 1) Skip if AC zero
SZE rB;: If (E =0)then (PC«PC +1) Skip if E zero
HLT rB,: S<«0(Sis a start-stop flip-flop) Halt computer

Memory Reference Instructions:

Operation
Symbol decoder Symbolic description
AND Dy AC«—AC N\ MI[AR]
ADD D, AC«<AC + M[AR), E «Cou
LDA D; AC < M[AR]
STA D; M[AR]«—AC
BUN Ds PC<—AR
BSA Ds M[AR]«<PC, PC<«<AR +1
ISZ Dq M[AR] <~ M[AR] + 1,

If M[AR] + 1 =0 then PC«PC + 1

-The effective address of the instruction is in AR and was placed there during timing
signal T, when | =0, or during timing signal Tz when I =1

- Memory cycle is assumed to be short enough to complete in a CPU cycle

- The execution of MR instruction starts with T,

11

College of Engineering

AND to AC

DoT4: DR « M[AR]

DoTs: AC < ACA DR, SC«0

ADD to AC

D:;Ts: DR « M[AR]

DiTs: AC «~ AC + DR, E « Cqt, SC « 0Add to AC and store carry in E

LDA: Load to AC

D,Ts: DR « M[AR]
D,Ts: AC « DR, SC « 0

STA: Store AC

D3T4: M[AR] «~ AC,SC «0
BUN: Branch Unconditionally
D4T4: PC « AR, SC«0
BSA: Branch and Save Return Address
M[AR] « PC,PC« AR +1

Memory, PC, AR at time T4

20
PC=21

AR =135
136

BSA:

0 BSA

135

Nextinstruction

Subroutine

|

1 BUN 135

Memory

Computer System Architectures

Read operand

AN

D with AC

Read operand

Memory, PC after execution

20

0 BSA 135

21

Nextinstruction

135

21

PC =136

Subroutine

l

1 BUN 135

DsT4: M[AR] « PC, AR« AR+1
D5Ts: PC « AR, SC«0
ISZ: Increment and SKip-if-Zero

DeT4: DR « M[AR]
D¢Ts: DR« DR +1
DsT4: M[AR] «~ DR, if (DR =0)then (PC«PC+1), SC«0

12

Memorv

College of Engineering Computer System Architectures

Flowchart for Memory Reference Instructions:

Memory-reference instruction

AND ADD LDA STA
y D0T4 L D1 T4 L 2 D2T4 v D3T4
| DR « M[AR] | | DR <« M[AR] | | DR « M[AR] | | MIARI « AC
v DoTs v D4Ts v DoTg
AC < ACADR| [AC —AC + DR AC < DR
SC < 0 E « Gout SC< 0
SC <0
BUN BSA ISZ
y DTy v DsTy r DgTy
PC « AR M[AR] < PC | DR < M[AR] |
SC <« 0 AR < AR+ 1
v D575 v DgTs
PC « AR DR« DR +1 |
SC <« 0
v DBTG
M[AR] < DR
If (DR = 0)
then (PC < PC + 1)
SC <0

Input-Output and Interrupt:

| A Terminal with a keyboard and a Printer |

* Input-Output Configuration
Serial Computer
Input-autput p
Berminar commupication o gisters and

[Cpomer |——{elier |-—Toute) g

Transmitte

[Eal
INPR Input register - 8 bits Y inforince

OUTR Output register - 8 bits — Serial Communications Path
FGI Input flag - 1 bit = Parallel Communications Path

FGO Outputflag - 1 bit
IEN Interrupt enable - 1 bit

- The terminal sends and receives serial information

- The serial information from the keyboard is shifted into INPR

- The serial info. for the printer is stored in the OUTR

- INPR and OUTR communicate with the terminal serially and with the AC in
parallel.

- The flags are needed to synchronize the timing difference between 1/O device and
the computer

13

College of Engineering

Program Controlled Data Transfer:

Computer System Architectures

* Input */

I* Qutput */

—-CPU -

* Initially FGI =0 */
loop: If FGI =0 goto loop
AC < INPR, FGI <0

[* Initially FGO =1 %/
loop: If FGO = 0 goto loop
OUTR <— AC, FGO <0

Start Input

--1/0 Device --

loop: If FGI =1 goto loop
INPR <— new data, FGI <1

loop: If FGO =1 goto loop
consume OUTR, FGO <1

TFGO1.

Start Qutput
AC <« Data
no
OUTR « AC
FGO < 0

haracte
no
END
Input-Output Instructions:
D,IT; = p (common to all input—-output instructions)
IR(i) = B; [bit in IR(6-11) that specifies the instruction]
p: SC+«0 Clear SC
INP pBu: AC(0-7T) < INPR, FGI<0 Input character
OUT pBie: OUTR<AC(0-7), FGO <0 Output character
SKI pBe: If (FGI = 1) then (PC«<PC + 1) Skip on input flag
SKO pBs: If (FGO =1) then (PC«<PC + 1) Skip on output flag
ION pBs. IEN «1 Interrupt enable on
IOF pBs: IEN <0 Interrupt enable off

Program-Controlled Input/output:
- Continuous CPU involvement
I/0 takes valuable CPU time
- CPU slowed down to 1/O speed
- Simple
- Least hardware

Input

LOOP, SKI DEV
BUN LOOP
INP DEV

Output

LOOP, LDA DATA

LOP, SKO DEV
BUN LOP
OUT DEV

14

College of Engineering Computer System Architectures

r ™

TABLE 5-6 Control Functions and Microoperations for the Basic Computer

Fetch R'Te. AR<+PC
R'Ty: IR+ M[AR]), PC+~PC+1
Decode R'Ty: Dy, ..., D;+Decode [R(12-14),
AR «IR{(0-11), [+ IR(15)
Indirect DiTy: AR+« M[AR]
Interrupt:

TiT,TW(IEN)FGI + FGO): R+«1
RT;: AR+«0, TR«PC
RT: M|AR]+~TR, PC+0
RT: PC+—PC+1, [EN«0, R+«0, SC«0

Memory-reference:
AND DiT,: DR+ M[AR]
DTy AC+~ACNMNDR, SC+0
ADD D\T: DR+M[AR]
D\T: AC+~AC+ DR, E+(,, S5C+«0
LDA D;T.: DR«—M|AR]
D,T:: AC+«DR, SC+0
5TA D,T,: M[AR]«AC, SC+«0
BUN .D.qT.q.'- PC'i-AR, SC -0
BSA DTy M[AR)«—PC, AR+AR +1
DyTs: PC+— AR, SC«0
ISZ DT:: DR+—M[AR]

D, T: DR+«DR+1

DyTy: M[AR])+DR, if(DR = 0)then(PC+PC + 1), SC+0
Register-reference:

Dud'Ty = r (common to all register-reference instructions)

IRGY=R8B(i=0,1,2,...,11)

rn SC«0
CLA rBy: AC+—0
CLE rBi: E+«0
CMA rBy AC+AC
CME rBy E«FE
CIR rBy; AC+shr AC, AC(15)«=E, E+AC(D)
CIL rB;: AC+—shl AC, AC(0)~—E, E+ AC(15)
INC rBy; AC+—AC + 1
SPA rBy: If (AC(15) = 0) then (PC +~PC + 1)
SNA rBy: IE(AC(15) = 1) then (PC+—PC 4+ 1)
SZA rB;: If(AC =0) then PC«—PC + 1)
SZE rB,: If(E =0) then (PC+~FC + 1)
HLT rBy: 5+0

Input-output:
DsITy = p (common to all input-output instructions)
IR((y=B:(i=6,7,8,9 10, 11)

p: SC«0
INP pBu: AC(0-T)«INFR, FGI+0
ouT pBuw: OUTR+—AC(0-T), FGO 0
SKl1 pBs: IE(FGI = 1) then (PC+PC + 1)
SKO pBs: IE(FGO = 1) then (PC+—PC + 1)
ION pB:: IEN«+1
10F pBye: [EN+0

15

College of Engineering Computer System Architectures

Hardware Components of BC
A memory unit: 4096 x 16.
Registers:

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Flip-Flops(Status):

IS, E, R, IEN, FGI, and FGO
Decoders: a 3x8 Opcode decoder

a 4x16 timing decoder

Common bus: 16 bits
Control logic gates:
Adder and Logic circuit: Connected to AC

Control Logic Gates

- Input Controls of the nine registers

- Read and Write Controls of memory

- Set, Clear, or Complement Controls of the flip-flops
- Sy, S1, So Controls to select a register for the bus

- AC, and Adder and Logic circuit

Address Register; AR

Scan all of the register transfer statements that change the content of AR:

RT,: AR«PC LD(AR)
RT,, AR «IR(0-11) LD(AR)
D’IT,; AR« M[AR] LD(AR)
RT: AR«O CLR(AR)
D.T,, AR<AR+1 INR(AR)

LD(AR) =RR'T, + R'T, + D'IT,
CLR(AR) = RT,
INR(AR) = D,T,

16

College of Engineering Computer System Architectures

Read = R'Ti + D7ZT3 + (D0 + D1 + D2 + D6) T4

Figure 5-16 Control gates associated with AR

12 12
From bus ——» AR = Tobus
it
Dy i
[—— N Clock
Ts — LD INR |CLR
P —
R _,._|>o_[
To
Dy A
Ta A
—
|/

Control of Common Bus

IEN: Interrupt Enable Flag
pB;: IEN =1 (I/O Instruction)
pBs: 1EN -0 (I/O Instruction)

RT,: IEN -0 (Interrupt)
p = D7IT; (Input/Output Instruction)

Figure 5-17 Conrtrol inpurs for IEN.

D+ _‘-\\
i £ o,
T /s) J Q—IEN
Clock —>
—
T

College of Engineering

Design of Accumulator Logic

Computer System Architectures

DgTs: AC+—AC NDR AND with DR
D,Ts: AC+—AC + DK Add with DR
D,T: AC < DR Transfer from DR
pBu: AC(0-T)« INPR Transfer from INPR
rBy: AC«—AC Complement
rBs: AC «shr AC, AC(15)«E Shift right
rBs: AC «shl AC, AC(0)<E Shift left
rBy: AC <0 Clear
rB.: AC—AC + 1 Increment
Figure 5-19 Circuits associated with AC.
i A
Iﬁ - Adder and 16 Amur!lulamr 16
Fraom DR —<—= logic E register i
B circuit (AC) To bus
From INPR —<—w=
Fat
f i
LD INR CLR
Clock
Conirol
gates

18

College of Engineering

Control of AC Register

-

Computer System Architectures

Figure 5-20 Gate structure for controlling the LD, INR, and CLR of AC.

16 16
From adder _g | AC %= To bus
FaX
I_— Clock
}_AND LD INR | CLR
— —
™ ADD
DR

3

:

A
=X
=

Z

x

JUUUUU

19

	System Buses:
	Multiple Bus Hierarchies:
	Synchronous Buses:
	Introduction of Basic Computer:

