
1 Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 5

Multiprocessors and

Thread-Level Parallelism

Computer Architecture
A Quantitative Approach, Fifth Edition

2

Contents

1. Introduction

2. Centralized SMA – shared memory architecture

3. Performance of SMA

4. DMA – distributed memory architecture

5. Synchronization

6. Models of Consistency

Copyright © 2012, Elsevier Inc. All rights reserved.

3

1. . Introduction. Why multiprocessors?

 Need for more computing power

 Data intensive applications

 Utility computing requires powerful processors

 Several ways to increase processor performance

 Increased clock rate limited ability

 Architectural ILP, CPI – increasingly more difficult

 Multi-processor, multi-core systems more feasible based on

current technologies

 Advantages of multiprocessors and multi-core Replication

rather than unique design.

Copyright © 2012, Elsevier Inc. All rights reserved.

4 Copyright © 2012, Elsevier Inc. All rights reserved.

Multiprocessor types

Symmetric multiprocessors
(SMP)

 Share single memory with
uniform memory access/latency
(UMA)

 Small number of cores

Distributed shared memory
(DSM)

 Memory distributed among
processors. Non-uniform
memory access/latency (NUMA)

 Processors connected via direct
(switched) and non-direct (multi-
hop) interconnection networks

In
tro

d
u
c
tio

n

5

Important ideas

 Technology drives the solutions.

 Multi-cores have altered the game!!

 Thread-level parallelism (TLP) vs ILP.

 Computing and communication deeply intertwined.

 Write serialization exploits broadcast communication on the

interconnection network or the bus connecting L1, L2, and L3 caches

for cache coherence.

 Access to data located at the fastest memory level greatly

improves the performance.

 Caches are critical for performance but create new problems

 Cache coherence protocols:

1. Cache snooping traditional multiprocessor

2. Directory based multi-core processors

 Copyright © 2012, Elsevier Inc. All rights reserved.

6

Review of basic concepts

 Cache smaller, faster memory which stores copies of the data from

frequently used main memory locations.

 Cache writing policies

 write-through every write to the cache causes a write to main memory.

 write-back writes are not immediately mirrored to main memory. Locations

written are marked dirty and written back to the main memory only when that

data is evicted from the cache. A read miss may require two memory

accesses: write the dirty location to memory and read new location from

memory.

 Caches are organized in blocks or cache lines.

 Cache blocks consist of

 Tag contains (part of) address of actual data fetched from main memory

 Data block

 Flags dirty bit, shared bit,

 Broadcast networks all nodes share a communication media

and hear all messages transmitted, e.g., bus.

Copyright © 2012, Elsevier Inc. All rights reserved.

7 Copyright © 2012, Elsevier Inc. All rights reserved.

Cache coherence; consistency

 Coherence
 Reads by any processor must return the most recently written value

 Writes to the same location by any two processors are seen in the
same order by all processors

 Consistency
 A read returns the last value written

 If a processor writes location A followed by location B, any
processor that sees the new value of B must also see the new
value of A

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

8 Copyright © 2012, Elsevier Inc. All rights reserved.

Thread-level parallelism (TLP)

 Distribute the workload among a set of concurrently running
threads.

 Uses MIMD model multiple program counters

 Targeted for tightly-coupled shared-memory multiprocessors

 To be effective need n threads for n processors.

 Amount of computation assigned to each thread = grain size
 Threads can be used for data-level parallelism, but the overheads

may outweigh the benefit

 Speedup
 Maximum speedup with n processors is n; embarrassingly parallel

 The actual speedup depends on the ratio of parallel versus
sequential portion of a program according to Amdahl’s law.

In
tro

d
u
c
tio

n

9

 TLP and ILP

 The costs for exploiting ILP are prohibitive in terms of silicon

area and of power consumption.

 Multicore processor have altered the game

 Shifted the burden for keeping the processor busy from the hardware

and architects to application developers and programmers.

 Shift from ILP to TLP

 Large-scale multiprocessors are not a large market, they

have been replaced by clusters of multicore systems.

 Given the slow progress in parallel software development in

the past 30 years it is reasonable to assume that TLP will

continue to be very challenging.

dcm

10

Multi-core processors

 Cores are now the building blocks of chips.

 Intel offers a family of processors based on the Nehalem architecture

with a different number of cores and L3 caches

Copyright © 2012, Elsevier Inc. All rights reserved.

11

TLC - exploiting parallelism

 Speed-up = Execution time with one thread / Execution time with N

threads.

 Amdahl’s insight:

 Depends on the ratio of parallel to sequential execution blocks.

 It is not sufficient to reduce the parallel execution time e.g., by

increasing the number of threads. It is critical to reduce the sequential

execution time!!

Copyright © 2012, Elsevier Inc. All rights reserved.

12

Problem

 What fraction of a computation can be sequential if we

wish to achieve a speedup of 80 with 100 processors?

Copyright © 2012, Elsevier Inc. All rights reserved.

13

Solution

 According to Amdahl’s law

 The parallel fraction is 0.9975. This implies that only 0.25% of the

computation can be sequential!!!

Copyright © 2012, Elsevier Inc. All rights reserved.

14

DSM

• Pros:
1. Cost-effective way to scale

memory bandwidth if most

accesses are to local memory

2. Reduced latency of local

memory accesses

• Cons
1. Communicating data between

processors more complex

2. Must change software to take

advantage of increased

memory bandwidth

dcm- mh

15

Slowdown due to remote access

A multiprocessor has a 3.3 GHz clock (0.3 nsec) and CPI = 0.5 when

references are satisfied by the local cache. A processor stalls for a remote

access which requires a 200nsec. How much faster is an application which

uses only local references versus when 0.2% of the references are remote?

Copyright © 2012, Elsevier Inc. All rights reserved.

16

2. Data access in SMA

 Caching data

 reduces the access time but demands cache coherence

 Two distinct data states

 Global state defined by the data in main memory

 Local state defined by the data in local caches

 In multi-core L3 cache is shared; L1 and L2 caches are private

 Cache coherence defines the behavior of reads and writes to

the same memory location. The value that should be returned by a

read is the most recent value of the data item.

 Cache consistency defines the behavior of reads and writes

with respect to different memory locations. It determines when a

written value will be returned by a read .

Copyright © 2012, Elsevier Inc. All rights reserved.

17

Conditions for coherence

 A read of processor P to location X

1. That follows a write by P to X, with no other processor writing to X between

the write and read executed by P, should return the value written by P.

2. That follows a write by another processor Q to X, should return the value

written by Q provided that:

 there is sufficient time between the write and the read operations

 There is no other write to X

 Writes to the same location are serialized.

 If P and Q write to X in this order some processors may see the value written

by Q before they see the value written by P.

Copyright © 2012, Elsevier Inc. All rights reserved.

18 dcm - mh

19 Copyright © 2012, Elsevier Inc. All rights reserved.

Processors may see different values through their caches

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

20 Copyright © 2012, Elsevier Inc. All rights reserved.

Cache coherence; consistency

 Coherence
 Reads by any processor must return the most recently written value

 Writes to the same location by any two processors are seen in the
same order by all processors

 Consistency
 A read returns the last value written

 If a processor writes location A followed by location B, any
processor that sees the new value of B must also see the new
value of A

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

21 Copyright © 2012, Elsevier Inc. All rights reserved.

Enforcing coherence

 Coherent caches provide:

 Migration: movement of data

 Replication: multiple copies of data

 Cache coherence protocols

 Directory-based

 Sharing status of each block kept in the directory

 Snooping

 Each core tracks sharing status of each block

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

22

Directory-based cache coherence protocols

 All information about the

blocks is kept in the

directory.

 SMP multiprocessors:

one centralized directory

 Directory is located
1. In the outmost cache for

multi-core systems.

2. In main memory

dcm - mh

DSM multiprocessors: distributed directory. More complex

 each node maintains a directory which tracks the sharing

information of every cache line in the node

23

Communication between private and shared

caches

 Multi-core processor a bus connects private L1 and L2
instruction (I) and data (D) caches to the shared L3 cache.

 To invalidate a cached item the processor changing the
value must first acquire the bus and then place the address
of the item to be invalidated on the bus.

 DSM Locating the value of an item is harder for write-back
caches because the current value of the item can be in the
local caches of another processor.

dcm

24 Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy coherence protocols

 Two strategies:

1. Write invalidate on write, invalidate all other copies.

 Used in modern microprocessors

 Example: a write-back cache during read misses of item X, processors
A and B. Once A writes X it invalidates the B’s cache copy of X

2. Write update or write broadcast update all cached copies
of a data item when the item is written
 Consumes more bandwidth thus not used in recent multiprocessors

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

25

Implementation of cache invalidate

 All processors snoop on the bus.

 To invalidate the processor changing an item acquires the bus and

broadcasts the address of the item.

 If two processors attempt to change at the same time the bus

arbitrator allows access to only one of them.

 How to find the most recent value of a data item

 Write-through cache the value is in memory but write buffers could

complicate the scenario.

 Write-back cache harder problem, the item could be in the private

cache of another processor.

 A block of cache has extra state bits

 Valid bit – indicates if the block is valid or not

 Dirty bit - indicates if the block has been modified

 Shared bit – cache block is shared with other processors

Copyright © 2012, Elsevier Inc. All rights reserved.

26

MSI – Modified, Shared, Invalid protocol

 Each core of a multi-core or each CPU runs a cache controller

 Responds to requests coming from two sources

1. The local core

2. The bus (or other broadcast network connecting caches and memory)

 Implements a finite-state machine

 The states of a cache block

1. Invalid another core has modified the block

2. Shared the block is shared with other cores

3. Modified the block in private cache has been updated by the local core

 When an item in a block is referenced (read or write):

 Hit The block is available

 Miss The bloc is not available

Copyright © 2012, Elsevier Inc. All rights reserved.

27 cmu

28 Copyright © 2012, Elsevier Inc. All rights reserved.

MSI - snoopy coherence protocol
C

e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

29 Copyright © 2012, Elsevier Inc. All rights reserved.

MSI snoopy coherence protocol
C

e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

30

 Problem

How can the snooping

protocol with the state

diagram at the right can be

changed for a write-through

cache?

What is the major hardware

functionality that is not

needed with a write-

through cache compared

with a write back cache?

Copyright © 2012, Elsevier Inc. All rights reserved.

31

Solution

Copyright © 2012, Elsevier Inc. All rights reserved.

A write to a block in the valid or

the shared state causes a write-

invalidate broadcast to flush the

block from other caches and move

to an exclusive state.

We leave the exclusive state

through either an invalidate from

another processor or a read miss

generated by the CPU when a

block is displaced from cache by

another block

We are moved from the shared

state only by a write from the CPU

or an invalidate from from another

processor

32

Solution (cont’d)

When another processor writes

a block that is resident in our

cache, we unconditionally

invalidate the corresponding

block in our cache. This

ensures that the next time we

read the data, we will load the

updated value of the block from

memory.

Whenever the bus sees a read

miss, it must change the state

of an exclusive block to shared

as the block is no longer

exclusive to a single cache.

Copyright © 2012, Elsevier Inc. All rights reserved.

33

Solution (cont’d)

 It is not possible for valid cache blocks to be incoherent with respect

to main memory in a system with write-through caches.

 The major change introduced in moving from a write-back to write-

through cache is the elimination of the need to access dirty blocks in

another processor’s caches.

 The write-through protocol it is no longer necessary to provide the

hardware to force write back on read accesses or to abort pending

memory accesses.

 As memory is updated during any write on a write-through cache, a

processor that generates a read miss will always retrieve the correct

information from memory.

Copyright © 2012, Elsevier Inc. All rights reserved.

34 Copyright © 2012, Elsevier Inc. All rights reserved.

Extensions to MSI protocol

 Complications for the basic MSI protocol:

 Operations are not atomic
 E.g. detect miss, acquire bus, receive a response

 Creates possibility of deadlock and races

 One solution: processor that sends invalidate can hold bus
until other processors receive the invalidate

 Extensions:
 MESI protocol add exclusive state to indicate when a clean

block is resident in only one cache.

 Prevents the need to write invalidate on a write

 MOESI protocol Owned state; indicates that the block is owned
by that cache and it is out-of-date in memory

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

35 cmu

36 Copyright © 2012, Elsevier Inc. All rights reserved.

Coherence protocols: extensions

 Shared memory bus and
snooping bandwidth is
bottleneck for scaling
symmetric multiprocessors
 Duplicating tags

 Place directory in outermost
cache

 Use crossbars or point-to-point
networks with banked memory

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

37 Copyright © 2012, Elsevier Inc. All rights reserved.

Coherence protocols

 AMD Opteron:
 Memory directly connected to each multicore chip in NUMA-like

organization

 Implement coherence protocol using point-to-point links

 Use explicit acknowledgements to order operations

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

38 Copyright © 2012, Elsevier Inc. All rights reserved.

True and false sharing misses

 Coherence influences cache miss rate

 Coherence misses
 True sharing misses

 Write to shared block (transmission of invalidation)

 Read an invalidated block

 False sharing misses

 A block is invalidated because some word in the block other
than the one read was written into. A subsequent reference to
the block causes a miss

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

39 Copyright © 2012, Elsevier Inc. All rights reserved.

x1 and x2 are in the
same block in the
shared state in the
caches of P1 and P2.

Identify the true and
false sharing misses
in each of the five
steps.

Prior to time step 1 ,
x1 was read by P2.

40

 Problem

 How to change the code of an application to avoid false

sharing?

 What can be done by a compiler and what requires

programmer directives?

Copyright © 2012, Elsevier Inc. All rights reserved.

41

Solution

 False sharing occurs when both the data object size is smaller than the

granularity of cache block valid bit(s) coverage and more than one data

object is stored in the same cache block frame in memory.

 Two ways to prevent false sharing.

 Changing the cache block size or the amount of the cache block covered by

a given valid bit are hardware changes and shall not be discussed.

 Software solution allocate data objects so that

1. only one truly shared object occurs per cache block frame in memory and

2. no non-shared objects are located in the same cache block frame as any

shared object. If this is done, then even with just a single valid bit per cache

block, false sharing is impossible.

 Shared, read-only-access objects could be combined in a single cache

block and not contribute to the false sharing problem because such a

cache block can be held by many caches and accessed as needed

without an invalidations to cause unnecessary cache misses.

Copyright © 2012, Elsevier Inc. All rights reserved.

42

Solution (cont’d)

 If shared data objects are explicitly identified in the program source

code, then the compiler should, with knowledge of memory hierarchy

details, be able to avoid placing more than one such object in a

cache block frame in memory. If shared objects are not declared,

then programmer directives may need to be added to the program.

The remainder of the cache block frame should not contain data that

would cause false sharing misses. The sure solution is to pad with

block with non-referenced locations.

 Padding a cache block frame containing a shared data object with

unused memory locations may lead to rather inefficient use of

memory space. A cache block may contain a shared object plus

objects that are read-only as a trade-off between memory use

efficiency and incurring some false-sharing misses. This optimization

almost certainly requires programmer analysis to determine if it

would be worthwhile. A careful attention to data distribution with

respect to cache lines and partitioning the computation across

processors is needed.

Copyright © 2012, Elsevier Inc. All rights reserved.

43

Types of cache misses: the three C’s

 1. Compulsory on the first access to a block; the block must

be brought into the cache; also called cold start misses, or first

reference misses.

 2. Capacity blocks are being discarded from cache because

cache cannot contain all blocks needed for program execution

(working set is much larger than cache capacity).

 3. Conflict also called collision misses or interference misses

occur when several blocks are mapped to the same set or block

frame in the case of set associative or direct mapped block

placement strategies

dcm

44

3. SMP performance – the workload

1. OLTEP (on-line transaction processing system) Client processes

generate requests and servers process them. Oracle database.

Server processes consume 85% of user time. The server processes

block for I/O after about 25,000 instructions.

2. DSS (decision support system) 6 queries average about 1.5

million instructions before blocking. Oracle database.

3. Alta Vista (a Web search engine). Alta Vista 200 GB database

Copyright © 2012, Elsevier Inc. All rights reserved.

45 Copyright © 2012, Elsevier Inc. All rights reserved.

46

OLTEP - the effect of L3 cache size

Contribution to cache misses

1. Instruction execution

2. L2/L3 cache access

3. Memory access

4. PAL code instructions

executed in kernel mode.

Execution time improves as L3

cache size grows from 1 to 2

MB.

The idle time grows as cache

size increases, as fewer

memory stalls occur and more

processors are needed to

cover the I/O bandwidth

Copyright © 2012, Elsevier Inc. All rights reserved.

47 Copyright © 2012, Elsevier Inc. All rights reserved.

OLTEP - factors contributing to L3 miss rate
P

e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

Memory access cycles

contributing to L3 miss rate

1. Instruction – decreases

as the L3 cache

increases

2. Capacity/conflict –

decreases as the L3

cache increases

3. Compulsory – almost

constant

4. False sharing – almost

constant

5. True sharing – almost

constant

48 Copyright © 2012, Elsevier Inc. All rights reserved.

OLTEP – the effect of number of processors
P

e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

2MB, two-way associative cache.

The memory access cycles per

instruction increase with the

number of processors.

The true sharing miss rate

increases

49 Copyright © 2012, Elsevier Inc. All rights reserved.

The effect of cache block size
P

e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

2MB, two-way associative

cache.

As the cache block size

increases the true sharing

misses decrease.

50

Andrew benchmark

 Emulates a software development environment.

 Parallel version of the make Unix command executed on 8 processors.

 Creates 203 processes

 787 disk requests on three different file systems

 Runs 5.24 seconds on 128 MB of memory, no paging.

Copyright © 2012, Elsevier Inc. All rights reserved.

51 Copyright © 2012, Elsevier Inc. All rights reserved.

52 Copyright © 2012, Elsevier Inc. All rights reserved.

53 Copyright © 2012, Elsevier Inc. All rights reserved.

54

Problem

 Compare the three approaches for performance evaluation

of multiprocessor systems:

1. Analytical modelling – use mathematical expressions to model the

behavior of the systems

2. Trace-driven simulation – run applications on a real machine and

generate a file of relevant events. The traces are then replayed

using cache simulators when parameters of the system are

changed.

3. Execution-driven simulators simulate the entire execution

maintaining an equivalent structure for the processor state.

Copyright © 2012, Elsevier Inc. All rights reserved.

55

Solution

Analytical models

 Can be used to derive high-level insight on the behavior of the system in

a very short time.

 The biggest challenge is in determining the values of the parameters.

 While the results from an analytical model can give a good

approximation of the relative trends to expect, there may be significant

errors in the absolute predictions.

Copyright © 2012, Elsevier Inc. All rights reserved.

56

Solution (cont’d)

Trace-driven simulations

 Typically have better accuracy than analytical models. This approach

can be fairly accurate when focusing on specific components of the

system (e.g., cache system, memory system, etc.).

 Need more time to produce results.

 Does not model the impact of aggressive processors (mispredicted

path) and may not model the actual order of accesses with reordering.

 Traces can also be very large, often taking gigabytes of storage, and

determining sufficient trace length for trustworthy results is important.

 Hard to generate representative traces from one class of machines that

will be valid for all the classes of simulated machines.

 Hard to model synchronization without abstracting the synchronization

in the traces to their high-level primitives.

Copyright © 2012, Elsevier Inc. All rights reserved.

57

Solution (cont’d)

Execution-driven simulation

1. models all the system components in detail and is consequently

the most accurate of the three approaches.

2. The speed of simulation is much slower than that of the other

models.

3. In some cases, the extra detail may not be necessary for the

particular design parameter of interest.

Copyright © 2012, Elsevier Inc. All rights reserved.

58

 Problem

 Devise a multiprocessor/cluster benchmark whose

performance gets worse as processors are added.

Copyright © 2012, Elsevier Inc. All rights reserved.

59

Solution

 Create the benchmark such that all processors update

the same variable or small group of variables continually

after very little computation.

 For a multiprocessor, the miss rate and the continuous

invalidates in between the accesses may contribute more

to the execution time than the actual computation and

adding more CPU’s could slow the overall execution

time.

 For a cluster organized as a ring communication costs

needed to update the common variables could lead to

inverse linear speedup behavior as more processors are

added.

Copyright © 2012, Elsevier Inc. All rights reserved.

60

4. DSM – distributed shared memory

 Cache snooping not scalable the bandwidth of the interconnection

network not sufficient when the number of processors increases

 Example:

 Four 4-core processors running at 4 GHz

 Able to sustain one reference per clock cycle

 Most bus traffic due to cache coherence traffic increasing cache size

does not help!!

 The bus bandwidth required 170 GB/sec far beyond the 4 GB/sec a modern

bus could accommodate.

 Distributed directory

 One entry per memory block

 Amount of information – (number of memory blocks) x (number of nodes)

 A directory-based coherence protocol must handle

1. a read miss

2. a write to a shared clean cache block

A write miss to a shared block is a combination of (1) and (2)

Copyright © 2012, Elsevier Inc. All rights reserved.

61 Copyright © 2012, Elsevier Inc. All rights reserved.

Directory protocols

Directory keeps track
of every block

 Which caches have
each block

 Dirty status of each
block

Implemented in shared
L3 cache

 Keep bit vector of
size = # cores for
each block in L3

 Not scalable beyond
shared L3

 Implemented in a
distributed fashion

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

62 Copyright © 2012, Elsevier Inc. All rights reserved.

Directory protocols

 For each block, maintain state:
1. Shared One or more nodes have the block cached, value in

memory is up-to-date

2. Uncached No node has a copy of the cached block

3. Modified Exactly one node has a copy of the cache block, value
in memory is out-of-date. Need Owner ID

 Need to track which node has a copy of every block

 Directory maintains block states and sends invalidation
messages

 To keep track which nodes have copies of a block of cache
 Bit vector with one bit per memory block maintained by every node

 Can also identify the owner of each block

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

63 Copyright © 2012, Elsevier Inc. All rights reserved.

Messages
D

is
trib

u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

64 Copyright © 2012, Elsevier Inc. All rights reserved.

Directory protocols
D

is
trib

u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

State transition for an individual

cache block. Requests from

1. Local processor black

2. Home directory gray

States similar to those in the

snoopy case but

1. Explicit-invalidate

2. Write-back

replace write misses.

An attempt to write a shared

cache block is treated as a

miss.

65 Copyright © 2012, Elsevier Inc. All rights reserved.

Directory protocols

 For uncached block:
 Read miss Requesting node is sent the requested data and is

made the only sharing node, block is now shared.

 Write miss The requesting node is sent the requested data and
becomes the sharing node, block is now exclusive

 For shared block:
 Read miss The requesting node is sent the requested data from

memory, node is added to sharing set

 Write miss The requesting node is sent the value, all nodes in
the sharing set are sent invalidate messages, sharing set only
contains requesting node, block is now exclusive

 For exclusive block:
 Read miss the owner is sent a data fetch message, block

becomes shared, owner sends data to the directory, data written
back to memory, sharers set contains old owner and requestor

 Data write back block becomes un-cached, sharer set is empty

 Write miss message is sent to old owner to invalidate and send
the value to the directory, requestor becomes new owner, block
remains exclusive

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

66 Copyright © 2012, Elsevier Inc. All rights reserved.

67

5. Synchronization

 Synchronization necessary for coordination of

complex activities and multi-threading.

 Atomic actions actions that cannot be interrupted

 Locks mechanisms to protect a critical section, code

that can be executed by only one thread at a time

 Hardware support for locks

 Thread coordination multiple threads of a thread group

need to act in concert

 Mutual exclusion only one thread at a time should be

allowed to perform an action

 Deadlocks

 Priority inversion

Copyright © 2012, Elsevier Inc. All rights reserved.

68

Atomic actions

 Must take special precautions for handling shared resources.

 Atomic operation a multi-step operation should be allowed to

proceed to completion without any interruptions and should not

expose the state of the system until the action is completed.

 Hiding the internal state of an atomic action reduces the number of

states a system can be in thus, it simplifies the design and

maintenance of the system.

 Atomicity requires hardware support:

 Test-and-Set instruction which writes to a memory location and

returns the old content of that memory cell as non-interruptible.

 Compare-and-Swap instruction which compares the contents of a

memory location to a given value and, only if the two values are the

same, modifies the contents of that memory location to a given new

value.

dcm

69

All-or-nothing atomicity

 Either the entire atomic action is carried out, or the system is left in the

same state it was before the atomic action was attempted;

a transaction is either carried out successfully, or the record targeted by

the transaction is returned to its original state.

 Two phases:

 Pre-commit during this phase it should be possible to back up from it

without leaving any trace. Commit point - the transition from the first to the

second phase. During the pre-commit phase all steps necessary to prepare

the post-commit phase, e.g., check permissions, swap in main memory all

pages that may be needed, mount removable media, and allocate stack

space must be carried out; during this phase no results should be exposed

and no actions that are irreversible should be carried out.

 Post-commit phase should be able to run to completion. Shared

resources allocated during the pre-commit cannot be released until after

the commit point.

dcm

70

The states of an all-or-nothing action.

dcm

Pending

Committed

Discarded

Commit

Abort

New action

Aborted

71

Before-or-after atomicity

 The effect of multiple actions is as if these actions have

occurred one after another, in some order.

dcm

72

Locks

 Locks shared variables which acts as a flag to coordinate access to a

shared data. Manipulated with two primitives

 ACQUIRE

 RELEASE

 Support implementation of before-or-after actions; only one thread can

acquire the lock, the others have to wait.

 All threads must obey the convention regarding the locks.

 The two operations ACQUIRE and RELEASE must be atomic.

 Hardware support for implementation of locks

 RSM – Read and Set Memory

 CMP –Compare and Swap

 RSM (mem)

 If mem=LOCKED then RSM returns r=LOCKED and sets mem=LOCKED

 If mem=UNLOCKED the RSM returns r=LOCKED and sets mem=LOCKED

dcm

73 dcm

74 dcm

75 Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware support for atomic actions:

 Atomic actions
 Atomic exchange

 Swaps register with memory location

 Test-and-set

 Sets under condition

 Fetch-and-increment

 Reads original value from memory and increments it in memory

 Requires memory read and write in uninterruptable instruction

 load linked/store conditional

 If the contents of the memory location specified by the load linked
are changed before the store conditional to the same address, the
store conditional fails

S
y
n
c
h
ro

n
iz

a
tio

n

76

Cache coherence and spin locks

 Spin lock a lock the system keep trying to acquire

 The system supports cache coherence cache the locks

 When a thread tries to acquire a lock it will use the local copy rather

than requiring a global memory access.

 Locality of lock access – a thread that used a lock is likely to need it

again.

Copyright © 2012, Elsevier Inc. All rights reserved.

77 Copyright © 2012, Elsevier Inc. All rights reserved.

Implementing locks

 Spin lock

 If no coherence:

 DADDUI R2,R0,#1

lockit: EXCH R2,0(R1) ;atomic exchange

 BNEZ R2,lockit ;already locked?

 If coherence:

lockit: LD R2,0(R1) ;load of lock

 BNEZ R2,lockit ;not available-spin

 DADDUI R2,R0,#1 ;load locked value

 EXCH R2,0(R1) ;swap

 BNEZ R2,lockit ;branch if lock wasn’t 0

S
y
n
c
h
ro

n
iz

a
tio

n

78 Copyright © 2012, Elsevier Inc. All rights reserved.

Implementing locks

 Advantage of this scheme: reduces memory traffic

 lock=0 unlocked lock=1 locked

S
y
n
c
h
ro

n
iz

a
tio

n

79

Thread coordination

 Critical section code that accesses a shared resource

 Race conditions two or more threads access shared data and the

result depends on the order in which the threads access the shared data.

 Mutual exclusion only one thread should execute a critical section

at any one time.

 Scheduling algorithms decide which thread to choose when multiple

threads are in a RUNNABLE state

 FIFO – first in first out

 LIFO – last in first out

 Priority scheduling

 EDF – earliest deadline first

 Preemption ability to stop a running activity and start another one

with a higher priority.

dcm

80

Conditions for thread coordination

1. Safety: The required condition will never be violated.

2. Liveness: The system should eventually progress irrespective of

contention.

3. Freedom From Starvation: No process should be denied progress

for ever. That is, every process should make progress in a finite time.

4. Bounded Wait: Every process is assured of not more than a fixed

number of overtakes by other processes in the system before it makes

progress.

5. Fairness: dependent on the scheduling algorithm

 • FIFO: No process will ever overtake another process.

 • LRU: The process which received the service least recently gets the

 service next.

Lecture 21

81

Conditions for mutual exclusion

 A solution for mutual exclusion problem should guarantee:

 Safety the mutual exclusion property is never violated

 Liveness a thread will access the shared resource in a finite time

 Freedom for starvation a thread will access the shared resource

in a finite time

 Bounded wait a thread will access the shared resource at least

after a given number of accesses by other threads.

dcm

82

A solution to critical section problem

 Applies only to two threads Ti and Tj with i,j ={0,1} which share

 integer turn if turn=i then it is the turn of Ti to enter the critical section

 boolean flag[2] if flag[i]= TRUE then Ti is ready to enter the critical section

 To enter the critical section thread Ti

 sets flag[i]= TRUE

 sets turn=j

 If both threads want to enter then turn will end up with a value of either i

or j and the corresponding thread will enter the critical section.

 Ti enters the critical section only if either flag[j]= FALSE or turn=i

 The solution is correct

 Mutual exclusion is guaranteed

 The liveliness is ensured

 The bounded-waiting is met

 But this solution may not work as load and store instructions can be

interrupted on modern computer architectures

dcm

83 dcm

84

Side effects of thread coordination

 Priority inversion a lower priority activity is allowed to

run before one with a higher priority

 Deadlocks

 Happen quite often in real life and the proposed solutions are not

always logical: “When two trains approach each other at a

crossing, both shall come to a full stop and neither shall start up

again until the other has gone.” a pearl from Kansas legislation.

 Examples

 Deadlock jury.

 Deadlock legislative body.

dcm

85

Examples of deadlock

 Traffic only in one direction.

 Solution one car backs up (preempt resources and

rollback). Several cars may have to be backed up .

 Starvation is possible.

dcm

86

A B

J

K

J

K

A B

87

Thread deadlock

 Deadlocks prevent sets of concurrent threads/processes from

completing their tasks.

 How does a deadlock occur a set of blocked threads each

holding a resource and waiting to acquire a resource held by

another thread in the set.

 Example

 locks A and B, initialized to 1

 P0 P1

wait (A); wait(B)

wait (B); wait(A)

 Aim prevent or avoid deadlocks

dcm

88

Priority scheduling

 Each thread/process has a priority and the one with the

highest priority (smallest integer highest priority) is

scheduled next.

 Preemptive

 Non-preemptive

 SJF is a priority scheduling where priority is the

predicted next CPU burst time

 Problem Starvation – low priority threads/processes

may never execute

 Solution to starvation Aging – as time progresses

increase the priority of the thread/process

 Priority my be computed dynamically

dcm

89

Priority inversion

A lower priority thread/process prevents a higher priority one from running.

T3 has the highest priority, T1 has the lowest priority; T1 and T3 share a lock.

 1. T1 acquires the lock, then it is suspended when T3 starts.

 2. Eventually T3 requests the lock and it is suspended waiting for T1 to

 release the lock.

 3. T2 has higher priority than T1 and runs; neither T3 nor T1 can run;

 T1 due to its low priority, T3 because it needs the lock help by T1.

Solution Allow a low priority thread holding a lock to run with the higher
priority of the thread which requests the lock

Lecture 22

90

6. Models of memory consistency

 Multiple processors/cores should see a consistent view of

memory.

 What properties should be enforced among reads and

writes to different location in a multiprocessor?

 Hard problem!!

 Sequential consistency the result of any execution be the

same as if the memory accesses by each processor be kept

in order and the accesses were interleaved

 To enforce it require a processor to delay any memory access until all

invalidations caused by that access are completed

 Simplicity from programmer’s point of view

 Performance disadvanatage

Copyright © 2012, Elsevier Inc. All rights reserved.

91 Copyright © 2012, Elsevier Inc. All rights reserved.

Example
M

o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

Processor 1:

A=0

…

A=1

if (B==0) …

Processor 2:

B=0

…

B=1

if (A==0) …

Two threads are running on different processors and A and B are cached
by each processor and the initial values are 0.

Should be impossible for both if-statements to be evaluated as true

 Delayed write invalidate?

 Sequential consistency:
 Result of execution should be the same as long as:

 Accesses on each processor were kept in order

 Accesses on different processors were arbitrarily interleaved

92

Problem

Copyright © 2012, Elsevier Inc. All rights reserved.

93

Solution

Copyright © 2012, Elsevier Inc. All rights reserved.

94 Copyright © 2012, Elsevier Inc. All rights reserved.

Implementing locks

 To implement, delay completion of all memory accesses
until all invalidations caused by the access are completed
 Reduces performance!

 Alternatives:
 Program-enforced synchronization to force write on processor to

occur before read on the other processor

 Requires synchronization object for A and another for B

 “Unlock” after write

 “Lock” after read

M
o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

95 Copyright © 2012, Elsevier Inc. All rights reserved.

Relaxed consistency models

 Rules:

 X → Y
 Operation X must complete before operation Y is done

 Sequential consistency requires:

 R → W, R → R, W → R, W → W

 Relaxing

1. Relax W → R
 “Total store ordering”

2. Relax W → W
 “Partial store order”

3. Relax R → W and R → R
 “Weak ordering” and “release consistency”

M
o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

96 Copyright © 2012, Elsevier Inc. All rights reserved.

Relaxed consistency models

 Consistency model is multiprocessor specific

 Programmers will often implement explicit
synchronization

 Speculation gives much of the performance advantage of
relaxed models with sequential consistency
 Basic idea: if an invalidation arrives for a result that has not been

committed, use speculation recovery

M
o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

97

Multiprocessing and multithreading

 Performance gains on an Intel i7

 Three benchmarks

 TPC – C (transaction processing)

 SPECJBB (SPEC Java Business Benchmark)

 SPECWEb99

Copyright © 2012, Elsevier Inc. All rights reserved.

98 Copyright © 2012, Elsevier Inc. All rights reserved.

99 Copyright © 2012, Elsevier Inc. All rights reserved.

