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1. . Introduction. Why multiprocessors?

= Need for more computing power
= Data intensive applications
= Utility computing requires powerful processors

s Several ways to increase processor performance
= Increased clock rate - limited ability
= Architectural = ILP, CPI — increasingly more difficult
= Multi-processor, multi-core systems - more feasible based on
current technologies

s Advantages of multiprocessors and multi-core = Replication
rather than unique design.




Multiprocessor types
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Important ideas

= Technology drives the solutions.
= Multi-cores have altered the game!!
= Thread-level parallelism (TLP) vs ILP.

= Computing and communication deeply intertwined.

= Write serialization exploits broadcast communication on the
Interconnection network or the bus connecting L1, L2, and L3 caches
for cache coherence.

= Access to data located at the fastest memory level greatly
Improves the performance.

m Caches are critical for performance but create new problems
= Cache coherence protocols:

1. Cache snooping - traditional multiprocessor
2. Directory based -> multi-core processors




Review of basic concepts

Cache = smaller, faster memory which stores copies of the data from
frequently used main memory locations.
Cache writing policies

= write-through - every write to the cache causes a write to main memory.

= write-back - writes are not immediately mirrored to main memory. Locations
written are marked dirty and written back to the main memory only when that
data is evicted from the cache. A read miss may require two memory
accesses: write the dirty location to memory and read new location from
memory.

Caches are organized in blocks or cache lines.
Cache blocks consist of

= Tag —> contains (part of) address of actual data fetched from main memory
= Data block
= Flags - dirty bit, shared bit,

Broadcast networks - all nodes share a communication media
and hear all messages transmitted, e.g., bus.




Cache coherence; consistency

= Coherence
= Reads by any processor must return the most recently written value

= Writes to the same location by any two processors are seen in the
same order by all processors

= Consistency
s A read returns the last value written

= If a processor writes location A followed by location B, any
processor that sees the new value of B must also see the new
value of A
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Thread-level parallelism (TLP)
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= Distribute the workload among a set of concurrently running
threads.

s Uses MIMD model - multiple program counters
= Targeted for tightly-coupled shared-memory multiprocessors
= To be effective need n threads for n processors.

= Amount of computation assigned to each thread = grain size
= Threads can be used for data-level parallelism, but the overheads
may outweigh the benefit
s Speedup
= Maximum speedup with n processors is n; embarrassingly parallel

= The actual speedup depends on the ratio of parallel versus
sequential portion of a program according to Amdahl’s law.




TLP and ILP

= The costs for exploiting ILP are prohibitive in terms of silicon
area and of power consumption.

= Multicore processor have altered the game

= Shifted the burden for keeping the processor busy from the hardware
and architects to application developers and programmers.

x Shift from ILP to TLP

s Large-scale multiprocessors are not a large market, they
have been replaced by clusters of multicore systems.

s Given the slow progress in parallel software development in
the past 30 years it is reasonable to assume that TLP will

continue to be very challenging.




Multi-core processors

= Cores are now the building blocks of chips.

= Intel offers a family of processors based on the Nehalem architecture
with a different number of cores and L3 caches

Clock rate
Processor Series Cores L3 cache Power (typical) (GHz) Price
Xeon 7500 8 . 18-24 MB 130 W 2-2.3 $2837-3692
Xeon 5600 4-6 wiwo SMT 12 MB 40-130 W 1.86-3.33  $440-1663
Xeon 3400-3500 . 4 wiwo SMT 8 MB 45-130 W 1.86-3.3 $189-999
Xeon 5500 2-4 4-8 MB 80-130 W 1.86-3.3 $80-1600
i7 860-975 4 8 MB 82 W-130W  2.53-3.33 $284-999
17 mobile 720-970 4 6-8 MB 45-55 W 1.6-2.1 $364-378
15 750-760 4 wo SMT 8 MB 80 W 24-28 $196-209
13 330-350 2 w/wo SMT 3 MB ISW 2.1-23

Figure 5.34 The characteristics for a range of Intel parts based on the Nehalem microarchitecture. This chart still
collapses a variety of entries in each row (from 2 to 8!). The price is for an order of 1000 units.




TLC - exploiting parallelism

=  Speed-up = Execution time with one thread / Execution time with N
threads.

= Amdahl’s insight:
= Depends on the ratio of parallel to sequential execution blocks.

= It is not sufficient to reduce the parallel execution time e.g., by
Increasing the number of threads. It is critical to reduce the sequential

execution time!!




Problem

= What fraction of a computation can be sequential if we
wish to achieve a speedup of 80 with 100 processors?




Solution

= According to Amdahl’'s law

Speedup = l

Fractienmmw
Speed up enhanced

For simplicity in this example, assume that the program operates in only two
modes: parallel with all processors fully used, which is the enhanced mode, or
serial with only one processor in use. With this simplification, the speedup in
enhanced mode is simply the number of processors, while the fraction of
enhanced mode is the time spent in parallel mode. Substituting into the previous
equation:

+ (1 — Fraction

enhanced )

80 !

ch“”“pmlm N

100 (1 = Fraction

parallel}

= The parallel fraction is 0.9975. This implies that only 0.25% of the
computation can be sequential!!!
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Slowdown due to remote access

A multiprocessor has a 3.3 GHz clock (0.3 nsec) and CPI = 0.5 when
references are satisfied by the local cache. A processor stalls for a remote
access which requires a 200nsec. How much faster is an application which
uses only local references versus when 0.2% of the references are remote?

[t is simpler to first calculate the clock cycles per instruction. The effective CPI
for the multiprocessor with 0.2% remote references is

CPI = Base CPI + Remote request rate X Remote request cost
= 0.5 + 0.2% x Remote request cost

The remote request cost is

Remote access cost _ 200 ns
Cycle time 0.3 ns

= 666 cycles

Hence, we can compute the CPI:

CPI=05+12=17

The multiprocessor with all local references is 1.7/0.5 = 3.4 times faster. In




2. Data access in SMA

= Caching data
s reduces the access time but demands cache coherence

= Two distinct data states
= Global state - defined by the data in main memory
= Local state - defined by the data in local caches

= [N multi-core L3 cache is shared; L1 and L2 caches are private

m Cache coherence - defines the behavior of reads and writes to
the same memory location. The value that should be returned by a
read is the most recent value of the data item.

s Cache consistency = defines the behavior of reads and writes

with respect to different memory locations. It determines when a
written value will be returned by a read .




Conditions for coherence

A read of processor P to location X

1. That follows a write by P to X, with no other processor writing to X between
the write and read executed by P, should return the value written by P.

2. That follows a write by another processor Q to X, should return the value
written by Q provided that:

= there is sufficient time between the write and the read operations
= Thereis no other write to X

Writes to the same location are serialized.

= If P and Q write to X in this order some processors may see the value written
by Q before they see the value written by P.




Proc Proc N N Proc
0 1 N
Write x
x=1 x=10
Cache % Cache1 Snoopy Bus CacheN
x=1
Memory

. The cache coherence problem. Inttially processors Cand 1 both read location x, wrutially contain-
ing the value 0, into their caches When processor O writes the value 1 to location x, the stale
value O for location % 15 still in processor 17 cache




Processors may see different values through their caches

Memory
Cache contents Cache contents contents for
Time Event for processor A for processorB  location X
() |
| Processor A reads X | ]
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Cache coherence; consistency

= Coherence
= Reads by any processor must return the most recently written value

= Writes to the same location by any two processors are seen in the
same order by all processors

= Consistency
s A read returns the last value written

= If a processor writes location A followed by location B, any
processor that sees the new value of B must also see the new
value of A
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Enforcing coherence

= Coherent caches provide:
= Migration: movement of data
= Replication: multiple copies of data
= Cache coherence protocols
= Directory-based
= Sharing status of each block kept in the directory
= Snooping
= Each core tracks sharing status of each block
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Directory-based cache coherence protocols

= All information about the
blocks is kept in the

directory. @ @ @

SMP multiprocessors: —lectany
- p : 012345 \
one centralized directory CCHEN

Directory is located Hem

1. In the outmost cache for
multi-core systems.

2. In main memory

DSM multiprocessors: distributed directory. More complex

—> each node maintains a directory which tracks the sharing
information of every cache line in the node




Communication between private and shared

acnes

= Multi-core processor = a bus connects private L1 and L2

instruction (I) and data (D) caches to the shared L3 cache.

= To invalidate a cached item the processor changing the
value must first acquire the bus and then place the address
of the item to be invalidated on the bus.

= DSM =>»Locating the value of an item is harder for write-back

caches because the current value of the item can be In the
local caches of another processor.




Snoopy coherence protocols

= Two strategies:
1. Write invalidate =» on write, invalidate all other copies.

= Used in modern microprocessors

« Example: a write-back cache during read misses of item X, processors
A and B. Once A writes X it invalidates the B’s cache copy of X
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Contents of Contents of Contents of

Processor activity Bus activity processor A's cache processor B's cache memory location X
0

Processor A reads X Cache miss for X 0

Processor B reads X Cache miss for X 0 0 0

Processor A writesa 1l  Invalidation for X 1 0

to X

Processor B reads X Cache miss for X 1 | 1

2. Write update or write broadcast =» update all cached copies

of a data item when the item is written
= Consumes more bandwidth thus not used in recent multiprocessors




Implementation of cache invalidate

= All processors snoop on the bus.

= To invalidate the processor changing an item acquires the bus and
broadcasts the address of the item.

= |f two processors attempt to change at the same time the bus
arbitrator allows access to only one of them.

» How to find the most recent value of a data item

=  Write-through cache - the value is in memory but write buffers could
complicate the scenario.

= Write-back cache - harder problem, the item could be in the private
cache of another processor.

s A block of cache has extra state bits

= Valid bit — indicates if the block is valid or not
= Dirty bit - indicates if the block has been modified
= Shared bit — cache block is shared with other processors




MSI — Modified, Shared, Invalid protocol

m Each core of a multi-core or each CPU runs a cache controller

= Responds to requests coming from two sources
.. The local core
2. The bus (or other broadcast network connecting caches and memory)

= Implements a finite-state machine

s The states of a cache block
1. Invalid - another core has modified the block
2. Shared - the block is shared with other cores
3. Modified = the block in private cache has been updated by the local core

=  When an item in a block is referenced (read or write):
= Hit - The block is available
= Miss = The bloc is not available
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MSI and MESI Cache Coherence ==

+ An efficient policy for single-writer/multi-reader usage
- Allow multiple read-only copies (all identical) (Shared)
- Allow only a single writable copy (Exclusive, Modified)
- Minimizes the number of bus transactions
+ Based on a write-back scheme
- On a read miss, issue a read transaction for a read-only copy
- On a write miss, issue a “read-with-intent-to-modify” for an
exclusive copy
- On a write hit to a read-only copy, issue an “invalidate”
transaction
- When displacing a Exclusive (i.e., “clean”) line, do nothing
- When displacing a Modified line, write the dirty value back
to memory
+ All caches “snoop” the bus for other caches’ read, RWITM and

invalidate transactions




MSI - snoopy coherence protocol

State of
addressed Type of

Request  Source cache block cache action Function and explanation

Read hit Processor Shared or Normmal hit Read data i local cache.

modified

Read miss Processor Invalid Nomal miss Place read miss on bus.

Read miss Processor Shared REeplacement Address conflict miss: place read miss on bus.

Read miss  Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit  Processor Modified Normal hit ~ Write data in local cache.

Write hit  Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normmal miss  Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss  Bus Shared No action Allow shared cache or memory to service read miss.

Read miss  Bus Modified Coherence  Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.
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MSI snoopy coherence protocol

CPU read hit

Shared

CPU read (read only)

Place read miss on bus

CPU
read
miss

CPU write q‘ﬁ.

Place read
miss on bus

Place write
miss on bus

Exclusive
(readiwrite)

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus
CPU write hit
CPU read hit
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Write miss = |®
for this block

Exclusive
(readiwrite)

Write miss for this block

Invalidate for
this block

Shared
(read only)

CPU
read
miss

Read miss

for this block Cache state transitions based
on requests from the bus
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Problem

How can the snooping
protocol with the state
diagram at the right can be
changed for a write-through
cache?

What is the major hardware
functionality that is not
needed with a write-
through cache compared
with a write back cache?

CPU

read

Write miss for this block

Invalidate for this block

Shared

Invalid CPU read (read only)

Place read miss on bus

CPU write

Place read
miss on bus

Write-back block
Place write miss on bus

Write miss
for block

Exclusive
(read/write)

CPU write miss
CPU write hit

CPU read hit
Write-back data
Place write miss on bus

Figure 5.7 Cache coherence state diagram with the state transitions induced by the
local processor shown in black and by the bus activities shown in gray. As in
Figure 5.6, the activities on a transition are shown in bold.




Solution

A write to a block in the valid or
the shared state causes a write-
Invalidate broadcast to flush the
block from other caches and move
to an exclusive state.

We leave the exclusive state
through either an invalidate from
another processor or a read miss
generated by the CPU when a
block is displaced from cache by
another block

We are moved from the shared
state only by a write from the CPU

or an invalidate from from another

processor

Shared
(read only)

CPU read

Ima."d/

CPU write
Invalidate block

CPU
read

CPU read
CPU write
Invalidate block

Exclusive
(read/write)

CPU read
hit or write

Figure 5.34 CPU portion of the simple cache coherency protocol for write-through
caches.




Solution (cont’d)

When another processor writes
a block that is resident in our

cache, we unconditionally invalid e miss (ront only)
invalidate the corresponding _/ k
block in our cache. This

ensures that the next time we Write miss

Invalidate block

read the data, we will load the
updated value of the block from

memory.

EXC|L

(read/write) Read miss

Whenever the bus sees a read  Fgure .35 Bus portion of the simple cache coherency protocol for write-through
miss, it must change the state
of an exclusive block to shared
as the block is no longer
exclusive to a single cache.

caches.




Solution (cont’d)

It is not possible for valid cache blocks to be incoherent with respect
to main memory in a system with write-through caches.

The major change introduced in moving from a write-back to write-
through cache is the elimination of the need to access dirty blocks in
another processor’'s caches.

The write-through protocol it is no longer necessary to provide the
hardware to force write back on read accesses or to abort pending
memory accesses.

As memory is updated during any write on a write-through cache, a
processor that generates a read miss will always retrieve the correct
iInformation from memory.




Extensions to MSI protocol

= Complications for the basic MSI protocol:

= Operations are not atomic
» E.g. detect miss, acquire bus, receive a response
« Creates possibility of deadlock and races

= One solution: processor that sends invalidate can hold bus
until other processors receive the invalidate

s Extensions:

= MESI protocol = add exclusive state to indicate when a clean
block is resident in only one cache.

= Prevents the need to write invalidate on a write
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= MOESI protocol = Owned state; indicates that the block is owned
by that cache and it is out-of-date in memory
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MESI States e

Given the state of an address in one cache, what can one infer
about the state of the same address elsewhere?

Modified in Cache A Shared in Cache A
Cache & Other Cache & Other
N"l—-l- i = nwalid 5 == =lid —IF'Inn’f kno :
Mermory Memory shared or
invalid
—=inwalid | —=_walid
Exclusive in Cache A Invalid in Cache A
Cache A Other Cache A Other
E =+ walid == ryalid | =+ nyalid —iﬂ_g_it_hn_g_-ﬂi

Memory Memory
5= _@ except that it

triust be valid
somewhere




Coherence Qrotocols extensions

Shared memory bus and

snooplng bandwidth is
bottleneck for scaling
symmetric multiprocessors

| Dup“Ca“ng '[agS One or One or Cne or One or
. . more levels more levels more levels maore levels
- Place d“"ecto ry IN outermost of private of private of private of private
cache cache cache cache

cache

= Use crossbars or point-to-point J
. Interconnection network
networks with banked memory
Bank O Bank 1 Bank 2 Bank 3
shared shared shared shared
cache cache cache cache

[/ system
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Coherence protocols

= AMD Opteron:

= Memory directly connected to each multicore chip in NUMA-like
organization

= Implement coherence protocol using point-to-point links
= Use explicit acknowledgements to order operations
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True and false sharing misses

m Coherence influences cache miss rate

s Coherence misses
= True sharing misses
= Write to shared block (transmission of invalidation)
= Read an invalidated block
= False sharing misses

= A block is invalidated because some word in the block other
than the one read was written into. A subsequent reference to
the block causes a miss
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X1 and x2 are in the
same block in the
shared state in the
caches of P1 and P2.

|dentify the true and
false sharing misses
In each of the five
steps.

Prior to time step 1,
x1 was read by P2.

Time P1 P2

\ Write x1

2 | Read x2

3 Write x1

4 Write x2 -
5 Read x2

Here are the classifications by time step:

1. This event is a true sharing miss, since x1 was read by P2 and needs to be
invalidated from P2.

2. This event is a false sharing miss, since x2 was invalidated by the write of x1
in P1, but that value of x1 is not used in P2.

3. This event is a false sharing miss, since the block containing x1 is marked
shared due to the read in P2, but P2 did not read x1. The cache block contain-
ing x1 will be in the shared state after the read by P2; a write miss is required
to obtain exclusive access to the block. In some protocols this will be handled
as an upgrade request, which generates a bus invalidate, but does not transfer
the cache block.

4. This event is a false sharing miss for the same reason as step 3.

5. This event is a true sharing miss, since the value being read was written by P2.




Problem

= How to change the code of an application to avoid false
sharing?

= What can be done by a compiler and what requires
programmer directives?




Solution

False sharing occurs when both the data object size is smaller than the
granularity of cache block valid bit(s) coverage and more than one data
object is stored in the same cache block frame in memory.

Two ways to prevent false sharing.
= Changing the cache block size or the amount of the cache block covered by
a given valid bit are hardware changes and shall not be discussed.
= Software solution - allocate data objects so that
1. only one truly shared object occurs per cache block frame in memory and

2. NO non-shared objects are located in the same cache block frame as any
shared object. If this is done, then even with just a single valid bit per cache
block, false sharing is impossible.

Shared, read-only-access objects could be combined in a single cache
block and not contribute to the false sharing problem because such a
cache block can be held by many caches and accessed as needed
without an invalidations to cause unnecessary cache misses.




Solution (cont’d)

If shared data objects are explicitly identified in the program source
code, then the compiler should, with knowledge of memory hierarchy
details, be able to avoid placing more than one such object in a
cache block frame in memory. If shared objects are not declared,
then programmer directives may need to be added to the program.
The remainder of the cache block frame should not contain data that
would cause false sharing misses. The sure solution is to pad with
block with non-referenced locations.

Padding a cache block frame containing a shared data object with
unused memory locations may lead to rather inefficient use of
memory space. A cache block may contain a shared object plus
objects that are read-only as a trade-off between memory use
efficiency and incurring some false-sharing misses. This optimization
almost certainly requires programmer analysis to determine if it
would be worthwhile. A careful attention to data distribution with
respect to cache lines and partitioning the computation across
processors is needed.




Types of cache misses: the three C’s

s 1. Compulsory =» on the first access to a block; the block must
be brought into the cache; also called cold start misses, or first
reference misses.

m 2. Capacity => blocks are being discarded from cache because

cache cannot contain all blocks needed for program execution
(working set is much larger than cache capacity).

m 3. Conflict = also called collision misses or interference misses

occur when several blocks are mapped to the same set or block
frame in the case of set associative or direct mapped block
placement strategies




3. SMP performance —the workload

1.  OLTEP (on-line transaction processing system) - Client processes
generate requests and servers process them. Oracle database.
Server processes consume 85% of user time. The server processes
block for 1/0 after about 25,000 instructions.

2. DSS (decision support system) = 6 queries average about 1.5
million instructions before blocking. Oracle database.

3. Alta Vista (a Web search engine). Alta Vista 200 GB database
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Figure 5.11 The execution time breakdown for the three programs (OLTP, DSS, and
AltaVista) in the commercial workload. The DSS numbers are the average across six dif-
ferent queries. The CP| varies widely from a low of 1.3 for AltaVista, to 1.61 for the DS5
queries, to 7.0 for OLTP. (Individually, the DSS queries show a CPI range of 1.3 to 1.9.]
“Other stalls” includes resource stalls (implemented with replay traps on the 21164),
branch mispredict, memory barrier, and TLB misses. For these benchmarks, resource-
based pipeline stalls are the dominant factor. These data combine the behavior of user
and kernel accesses. Only OLTP has a significant fraction of kernel accesses, and the ker-
nel accesses tend to be better behaved than the user accesses! All the measurements
shown in this section were collected by Barroso, Gharachorloo, and Bugnion [1998].



OLTEP - the effect of L3 cache size

Contribution to cache misses
1. Instruction execution

2. L2/L3 cache access

3. Memory access

4. PAL code - instructions
executed in kernel mode.

Execution time improves as L3
cache size grows from 1 to 2
MB.

The idle time grows as cache
Size increases, as fewer
memory stalls occur and more
processors are needed to
cover the I/0 bandwidth

Normalized execution time

100 ~
90 -
80 -

70 -~
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O Memory access

m | 2/L3 cache access
B [nstruction execution
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OLTEP - factors contributing to L3 miss rate

3.25
Memory access cycles .
contributing to L3 miss rate
. 2.75 - :
1. Instruction — decreases ; 'g:"“ci“c’” .
pacity/conflict
as the L3 cache 251 O Compulsory
increases o o5 W False sharing
B True sharing

2. Capacity/conflict -
decreases as the L3
cache increases

3. Compulsory — almost

1.75 -

1.5 4

1.25 -+

Memory cycles per instruction

constant ;- __
4. False sharing — almost 0.75 -

constant 05
5. True sharing — almost 0.05

constant

2 4
Cache size (MB)
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ELTEP — the effect of number of processors

2MB, two-way associative cache. 2 [girsrocion

O Capacity/conflict
O Compulsory

B False sharing

B True sharing

The memory access cycles per 257
Instruction increase with the
number of processors.

The true sharing miss rate

Increases I
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he effect of cache block size

2MB, two-way associative 16 -
cache. 15 -

B Instruction
O Capacity/conflict

13 - I O Compulsory
. B False sharing
As the cache block size 12 4 B True sharing
11 4
- I

Increases the true sharing
misses decrease.

Misses per 1000 instructions
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Andrew benchmark

= Emulates a software development environment.

= Parallel version of the make Unix command executed on 8 processors.
= Creates 203 processes
= 787 disk requests on three different file systems
= Runs 5.24 seconds on 128 MB of memory, no paging.

m Level I instruction cache—32 KB, two-way set associative with a 64-byte
block, 1 clock cycle hit time.

m Level 1 data cache—32 KB, two-way set associative with a 32-byte block,
1 clock cycle hit time. We vary the L1 data cache to examine its effect on
cache behavior.

m  Level 2 cache—1 MB unified, two-way set associative with a 128-byte block,
10 clock cycle hit time.

® Main memory—Single memory on a bus with an access time of 100 clock
cycles.

w Disk system—Fixed-access latency of 3 ms (less than normal to reduce idle time).




User Kernel Synchronization Processor idle

execution execution wait (waiting for 1/O)
Instructions executed 27% 1% 1% 69%
Execution time 27% 7% 2% 64%

Figure 5.16 The distribution of execution time in the multiprogrammed parallel
“make” workload. The high fraction of idle time is due to disk latency when only one of
the eight processors is active. These data and the subsequent measurements for this
workload were collected with the SimOS system [Rosenblum et al. 1995]. The actual
runs and data collection were done by M. Rosenblum, S. Herrod, and E. Bugnion of
Stanford University.
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Figure 5.17 The data miss rates for the user and kernel components behave differently for increases in the L1
data cache size (on the left) versus increases in the L1 data cache block size (on the right). Increasing the L1 data
cache from 32 KB to 256 KB (with a 32-byte block) causes the user miss rate to decrease proportionately more than
the kernel miss rate: the user-level miss rate drops by almost a factor of 3, while the kernel-level miss rate drops only
by a factor of 1.3. The miss rate for both user and kernel components drops steadily as the L1 block size is increased
(while keeping the L1 cache at 32 KB). In contrast to the effects of increasing the cache size, increasing the block size
improves the kernel miss rate more significantly (just under a factor of 4 for the kernel references when going from
16-byte to 128-byte blocks versus just under a factor of 3 for the user references).
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Figure 5.18 The components of the kernel data miss rate change as the L1 data
cache size is increased from 32 KB to 256 KB, when the multiprogramming workload
is run on eight processors. The compulsory miss rate component stays constant, since
it is unaffected by cache size. The capacity component drops by more than a factor of 2,
while the coherence component nearly doubles. The increase in coherence misses
occurs because the probability of a miss being caused by an invalidation increases with
cache size, since fewer entries are bumped due to capacity. As we would expect, the
increasing block size of the L1 data cache substantially reduces the compulsory miss
rate in the kernel references. It also has a significant impact on the capacity miss rate,
decreasing it by a factor of 2.4 over the range of block sizes. The increased block size
has a small reduction in coherence traffic, which appears to stabilize at 64 bytes, with
no change in the coherence miss rate in going to 128-byte lines. Because there are no
significant reductions in the coherence miss rate as the block size increases, the fraction
of the miss rate due to coherence grows from about 7% to about 15%.



Problem

s Compare the three approaches for performance evaluation
of multiprocessor systems:

1. Analytical modelling — use mathematical expressions to model the
behavior of the systems

2. Trace-driven simulation — run applications on a real machine and
generate a file of relevant events. The traces are then replayed
using cache simulators when parameters of the system are
changed.

3. Execution-driven simulators simulate the entire execution
maintaining an equivalent structure for the processor state.




Solution

Analytical models

= Can be used to derive high-level insight on the behavior of the system in
a very short time.

= The biggest challenge is in determining the values of the parameters.

= While the results from an analytical model can give a good
approximation of the relative trends to expect, there may be significant
errors in the absolute predictions.




Solution (cont’d)

Trace-driven simulations

= Typically have better accuracy than analytical models. This approach
can be fairly accurate when focusing on specific components of the
system (e.g., cache system, memory system, etc.).

= Need more time to produce results.

= Does not model the impact of aggressive processors (mispredicted
path) and may not model the actual order of accesses with reordering.

= Traces can also be very large, often taking gigabytes of storage, and
determining sufficient trace length for trustworthy results is important.

= Hard to generate representative traces from one class of machines that
will be valid for all the classes of simulated machines.

= Hard to model synchronization without abstracting the synchronization
In the traces to their high-level primitives.




Solution (cont’d)

Execution-driven simulation

1. models all the system components in detail and is consequently
the most accurate of the three approaches.

2. The speed of simulation is much slower than that of the other
models.

3. In some cases, the extra detail may not be necessary for the
particular design parameter of interest.




Problem

= Devise a multiprocessor/cluster benchmark whose
performance gets worse as processors are added.




Solution

= Create the benchmark such that all processors update
the same variable or small group of variables continually
after very little computation.

s For a multiprocessor, the miss rate and the continuous
Invalidates in between the accesses may contribute more
to the execution time than the actual computation and
adding more CPU’s could slow the overall execution
time.

m For a cluster organized as a ring communication costs
needed to update the common variables could lead to
Inverse linear speedup behavior as more processors are
added.




4. DSM — distributed shared memory

Cache snooping not scalable - the bandwidth of the interconnection
network not sufficient when the number of processors increases
Example:

= Four 4-core processors running at 4 GHz

= Able to sustain one reference per clock cycle

= Most bus traffic due to cache coherence traffic - increasing cache size
does not help!!

= The bus bandwidth required 170 GB/sec far beyond the 4 GB/sec a modern
bus could accommodate.
Distributed directory
= One entry per memory block
=  Amount of information — (hnumber of memory blocks) x (number of nodes)

A directory-based coherence protocol must handle
1. aread miss
2. aWwrite to a shared clean cache block
A write miss to a shared block is a combination of (1) and (2)




Directory keeps track
of every block

= Which caches have
each block

= Dirty status of each
block
Implemented in shared
L3 cache

= Keep bit vector of
Size = # cores for
each block in L3

= Not scalable beyond
shared L3

= Implemented in a
distributed fashion

Directory protocols

ulticore ulticore ulticore ulticore
processor processor processor processor
+ caches + caches + caches + caches
Memory I— l[e] Memery I— /0 Memory I——w Memory I——(m
[ Interconnection network }
Memory 110 Memory 110 Memory —[B Memory —(B
ulticore ulticore ulticore ulticore
processor processor processor processor
+ caches + caches + caches + caches

)
2]
—
=3,
o
=
—
@D
o
92
iy
8
=
®
o
<
®
3
o
>
<
D
>
=
o
=
@D
o
—t
o
=
<
Qo
o)
0
®
Q
O
o
2
®
=
@D
>
)
@D




Directory protocols

r For each block, maintain state:

1. Shared = One or more nodes have the block cached, value in
memory is up-to-date

2. Uncached - No node has a copy of the cached block
3. Modified - Exactly one node has a copy of the cache block, value
In memory is out-of-date. Need Owner ID
= Need to track which node has a copy of every block

= Directory maintains block states and sends invalidation
messages
= To keep track which nodes have copies of a block of cache

= Bit vector with one bit per memory block maintained by every node
= Can also identify the owner of each block
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Messages

Message

Message type Source Destination contents  Function of this message

Read miss Local cache Home directory P, A Node P has a read miss at address A:
request data and make P a read sharer.

Write miss Local cache Home directory P, A MNode P has a write miss at address A
request data and make P the exclusive owner.

Invalidate Local cache Home directory A Request to send invalidates to all remote caches
that are caching the block at address A.

Invalidate Home directory Remote cache A Invalidate a shared copy of data at address A.

Fetch Home directory Remote cache A Fetch the block at address A and send it to its
home directory: change the state of A in the
remote cache to shared.

Fetch/invalidate Home directory Remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply Homedirectory Local cache D Return a data value from the home memory.

Data write-back Remote cache  Home directory  A.D Write-back a data value for address A.
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Directory protocols

State transition for an individual
cache block. Requests from

1. Local processor - black

2. Home directory - gray

States similar to those in the
snoopy case but

1. Explicit-invalidate
2. Write-back
replace write misses.

Fetch
invalidate

CPL write hit
CPLU read hit

An attempt to write a shared
cache block is treated as a
MmIsS.

Data write-back

Send write miss message

\

Maodified
(read’write)

CPU read hit

7

|
)
Invalidate
/ Shared

(read only)

CPU read
Send read miss mess.age'_

CPL write

CPL write miss

\\_ J Data write-back

Write miss
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Directory protocols

m For uncached block:

= Read miss - Requesting node is sent the requested data and is
made the only sharing node, block is now shared.

= Write miss - The requesting node is sent the requested data and
becomes the sharing node, block is now exclusive

m For shared block:

= Read miss - The requesting node is sent the requested data from
memory, node is added to sharing set

= Write miss - The requesting node is sent the value, all nodes in
the sharing set are sent invalidate messages, sharing set only
contains requesting node, block is now exclusive

m For exclusive block:

= Read miss - the owner is sent a data fetch message, block
becomes shared, owner sends data to the directory, data written
back to memory, sharers set contains old owner and requestor

= Data write back - block becomes un-cached, sharer set is empty

= Write miss - message is sent to old owner to invalidate and send
the value to the directory, requestor becomes new owner, block
remains exclusive

92U318Y0D paseg-A1010aiig pue AlIowa\ pareys painguisiq




Data value reply;
Sharers = {P}

Shared
(read only)

Read miss

Write miss
&
S §§ Data value reply
| o Sharers = Sharers + {P}
pl28
g(S¢ &
« © « (Q\
S| = < (S
1] 8 o & a2
Q .
Data
write-back

Exclusive
(read/write)

Fetch/invalidate
miss | Data value reply
Sharers = {P}

Figure 5.23 The state transition diagram for the directory has the same states and
structure as the transition diagram for an individual cache. All actions are in gray
because they are all externally caused. Bold indicates the action taken by the directory
in response to the request.
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5. Synchronization

= Synchronization - necessary for coordination of
complex activities and multi-threading.

= Atomic actions = actions that cannot be interrupted

s Locks - mechanisms to protect a critical section, code
that can be executed by only one thread at a time

= Hardware support for locks

= Thread coordination - multiple threads of a thread group
need to act in concert

= Mutual exclusion - only one thread at a time should be
allowed to perform an action

s Deadlocks

= Priority inversion




Atomic actions

= Must take special precautions for handling shared resources.

= Atomic operation - a multi-step operation should be allowed to
proceed to completion without any interruptions and should not
expose the state of the system until the action is completed.

= Hiding the internal state of an atomic action reduces the number of
states a system can be in thus, it simplifies the design and
maintenance of the system.

= Atomicity requires hardware support:

= Test-and-Set - instruction which writes to a memory location and
returns the old content of that memory cell as non-interruptible.

= Compare-and-Swap -» instruction which compares the contents of a
memory location to a given value and, only if the two values are the
same, modifies the contents of that memory location to a given new
value.




All-or-nothing atomicity

Either the entire atomic action is carried out, or the system is left in the
same state it was before the atomic action was attempted,;

a transaction is either carried out successfully, or the record targeted by
the transaction is returned to its original state.

Two phases:

= Pre-commit - during this phase it should be possible to back up from it
without leaving any trace. Commit point - the transition from the first to the
second phase. During the pre-commit phase all steps necessary to prepare
the post-commit phase, e.g., check permissions, swap in main memory all
pages that may be needed, mount removable media, and allocate stack
space must be carried out; during this phase no results should be exposed
and no actions that are irreversible should be carried out.

= Post-commit phase - should be able to run to completion. Shared
resources allocated during the pre-commit cannot be released until after
the commit point.




Commit

New action

Discarded

Pending

Aborted

The states of an all-or-nothing action.




Before-or-after atomicity

= The effect of multiple actions is as if these actions have
occurred one after another, in some order.




Locks

m Locks- shared variables which acts as a flag to coordinate access to a
shared data. Manipulated with two primitives

= ACQUIRE
= RELEASE

= Support implementation of before-or-after actions; only one thread can
acquire the lock, the others have to wait.

= All threads must obey the convention regarding the locks.
= The two operations ACQUIRE and RELEASE must be atomic.
= Hardware support for implementation of locks

= RSM - Read and Set Memory
= CMP —Compare and Swap
= RSM (mem)
= If mem=LOCKED then RSM returns r=LOCKED and sets mem=LOCKED
= If mem=UNLOCKED the RSM returns r=LOCKED and sets mem=LOCKED




structure lock
integer state

procedure FAULTY _ACQUIRE (lock reference L)
while L.state < LOCKED do nothing
|.state < LOCKED

procedure RELEASE (lock reference L)
L.state €UNLOCKED

time

¥

ACQUIRE L
Operations of |
Thread A l

|
1
F

Operations of T
Thread B ‘

ACQUIRE L
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™ The hardware instruction RSM - Read and Set Memory )
procedure RSM ( reference mem)

do atomic
r mem
mem LOCKED
return r Tl If mem was UNLOCKED then RSM returnsr = UNMLOCKED and sets mem = LOCKED
f* If mem was LOCKED  then RSMreturnsr = LOCKED  and sets mem = LOCKED
* RSM allows us to implement ACQUIRE and RELEASE as critical sections

procedure ACQUIRE { lock reference L)
R1 RSM(L. state ] " Read and Set lock L

while R1 = LOCKED do * If already LOCKED keep checking
R1 RSM(L. state)

procedure RELEASE ( lock reference L)
L. state UNLOCKED
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Hardware support for atomic actions:

= Atomic actions
= Atomic exchange
= Swaps register with memory location
= Test-and-set
= Sets under condition
= Fetch-and-increment
» Reads original value from memory and increments it in memory
= Requires memory read and write in uninterruptable instruction

UoIeZIUOIYIUAS

= load linked/store conditional

« If the contents of the memory location specified by the load linked
are changed before the store conditional to the same address, the
store conditional fails




Cache coherence and spin locks

m Spin lock = a lock the system keep trying to acquire

= The system supports cache coherence =» cache the locks

= When a thread tries to acquire a lock it will use the local copy rather
than requiring a global memory access.

= Locality of lock access — a thread that used a lock is likely to need it
again.




Implementing locks

s Spin lock
= |If N0 coherence:
DADDUI

lockit; EXCH
BNEZ

= |f coherence:
lockit: LD
BNEZ
DADDUI
EXCH
BNEZ

R2,R0O.#1
R2,0(R1)
R2. lockit

R2,0(R1)
R2,lockit
R2,R0O,#1
R2,0(R1)
R2,lockit

;atomic exchange
;already locked?

;load of lock

;not available-spin
;load locked value
swap

‘branch if lock wasn’t O

UoIeZIUOIYIUAS



Implementing locks

= Advantage of this scheme: reduces memory traffic
lock=0 =»unlocked lock=1 =»locked

UoIeZIUOIYIUAS

Coherence state of
Step PO P1 P2 lock at end of step Bus/directory activity
| Has lock Begins spin, testing if  Begins spin, testing Shared Cache misses for Pl and P2
lock =0 iflock =0 satisfied 1ineither order. Lock

state becomes shared.

2 Setlock o0 (Invalidate received)  (Invalidate received) Excluzive (PO} Write invalidate of lock
variable from PO,

3 Cache miss Cache miss Shared Bus/directory services P2
cache miss; write-back
from PO; state shared.

4 (Waits while bus/ Lock =0 test Shared Cache miss for P2 satisfied
directory busy) succeeds
3 Lock=10 Executes swap, gels Shared Cache miss for P1 satistied
cache miss
B Executes swap, Completes swap: Exclusive (P2} Busfdirectory services P2
oets cache miss returns O and sets cache miss; generates
lock =1 invalidate; lock 1s exclusive.
7 Swap completes and  Enter critical section Exclusive iP1)  Busfdirectory services Pl
returns 1, and sets cache miss; sends invalidate
lock =1 and generates wrile-back
from P2.
5 Spins, testing if Mone

lock =0
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Thread coordination

m Critical section 2 code that accesses a shared resource

s Race conditions = two or more threads access shared data and the
result depends on the order in which the threads access the shared data.

s Mutual exclusion = only one thread should execute a critical section
at any one time.

s Scheduling algorithms - decide which thread to choose when multiple
threads are in a RUNNABLE state

= FIFO — first in first out

= LIFO —last in first out

= Priority scheduling

= EDF — earliest deadline first

s Preemption -2 ability to stop a running activity and start another one

with a higher priority.




Conditions for thread coordination

. Safety: The required condition will never be violated.

Liveness: The system should eventually progress irrespective of
contention.

Freedom From Starvation: No process should be denied progress
for ever. That is, every process should make progress in a finite time.

Bounded Wait: Every process is assured of not more than a fixed

number of overtakes by other processes in the system before it makes
progress.

Fairness: dependent on the scheduling algorithm

* FIFO: No process will ever overtake another process.
* LRU: The process which received the service least recently gets the
service next.




Conditions for mutual exclusion

= A solution for mutual exclusion problem should guarantee:
Safety - the mutual exclusion property is never violated

Liveness = a thread will access the shared resource in a finite time
Freedom for starvation - a thread will access the shared resource
in a finite time

Bounded wait - a thread will access the shared resource at least
after a given number of accesses by other threads.




A solution to critical section problem

= Applies only to two threads T;and T, with 1,j ={0,1} which share

= integer turn -> if turn=i then it is the turn of T,to enter the critical section

= boolean flag[2] = if flag[i]|= TRUE then T,is ready to enter the critical section
= To enter the critical section thread T,

m sets flag[i]= TRUE

= Sets turn=j

= If both threads want to enter then turn will end up with a value of either |
or j and the corresponding thread will enter the critical section.

= T,enters the critical section only if either flag[j]= FALSE or turn=i
= The solution is correct
= Mutual exclusion is guaranteed

= The liveliness is ensured
= The bounded-waiting is met

= But this solution may not work as load and store instructions can be
iInterrupted on modern computer architectures




The structure of thread Ti

Do {

flag[i]=TRUE;
turn=j;
while (flag[j] && turn ==j );

CRITICAL SECTION

flag[i]=FALSE:

} while(TRUE)




Side effects of thread coordination

= Priority inversion - a lower priority activity is allowed to
run before one with a higher priority

s Deadlocks

= Happen quite often in real life and the proposed solutions are not
always logical: “When two trains approach each other at a
crossing, both shall come to a full stop and neither shall start up
again until the other has gone.” a pearl from Kansas legislation.

= Examples
» Deadlock jury.
= Deadlock legislative body.




Examples of deadlock

= Traffic only in one direction.

= Solution =» one car backs up (preempt resources and
rollback). Several cars may have to be backed up .

= Starvation is possible.
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Thread deadlock

m Deadlocks = prevent sets of concurrent threads/processes from
completing their tasks.

m How does a deadlock occur =» a set of blocked threads each
holding a resource and waiting to acquire a resource held by
another thread in the set.

m Example
» locks A and B, initialized to 1
I:)O Pl
wait (A); wait(B)
wait (B); wait(A)

=  Aim=> prevent or avoid deadlocks




Priority scheduling

Each thread/process has a priority and the one with the
highest priority (smallest integer = highest priority) Is
scheduled next.

= Preemptive
= Non-preemptive

SJF is a priority scheduling where priority is the
predicted next CPU burst time

Problem =» Starvation — low priority threads/processes
may never execute

Solution to starvation = Aging — as time progresses
Increase the priority of the thread/process

Priority my be computed dynamically




Priority inversion

A lower priority thread/process prevents a higher priority one from running.
T1 T2 T3

ACQUIRE (/)

Context switch

\-

ach
contel gt

T4 has the highest priority, T, has the lowest priority; T, and T; share a lock.
1. T, acquires the lock, then it is suspended when T, starts.
2. Eventually T, requests the lock and it is suspended waiting for T, to
release the lock.
3. T, has higher priority than T, and runs; neither T, nor T, can run;
T, due to its low priority, T, because it needs the lock help by T,

ACQUIRE (/)

Solution—> Allow a low priority thread holding a lock to run with the higher
priority of the thread which requests the lock




6. Models of memory consistency

m Multiple processors/cores should see a consistent view of
memory.

= \What properties should be enforced among reads and
writes to different location in a multiprocessor?

= Hard problem!!

= Seguential consistency —>the result of any execution be the
same as If the memory accesses by each processor be kept
In order and the accesses were interleaved

= To0 enforce it require a processor to delay any memory access until all
invalidations caused by that access are completed

= Simplicity from programmer’s point of view

= Performance disadvanatage




Example

Two threads are running on different processors and A and B are cached
by each processor and the initial values are 0.

Should be impossible for both if-statements to be evaluated as true
Delayed write invalidate?

= Seguential consistency:

Result of execution should be the same as long as:
m Accesses on each processor were kept in order
= Accesses on different processors were arbitrarily interleaved

Processor 1. Processor 2:
A=0 B=0
A=1 B=1
it (B==0) ... if (A==0) ...
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Problem

Suppose we have a processor where a write miss takes 50 cycles to establish
ownership, 10 cycles to issue each invalidate after ownership is established, and
80 cycles for an invalidate to complete and be acknowledged once it is issued.
Assuming that four other processors share a cache block, how long does a write
miss stall the writing processor if the processor is sequentially consistent?
Assume that the invalidates must be explicitly acknowledged before the coher-
ence controller knows they are completed. Suppose we could continue executing
after obtaining ownership for the write miss without waiting for the invalidates;
how long would the write take?




Solution

When we wait for invalidates, each write takes the sum of the ownership time plus
the time to complete the invalidates. Since the invalidates can overlap, we need
only worry about the last one, which starts 10 + 10 + 10 + 10 = 40 cycles after
ownership is established. Hence, the total time for the write is 50 + 40 + 80 = 170
cycles. In comparison, the ownership time is only 50 cycles. With appropriate
write buffer implementations, it is even possible to continue before ownership is
established.




Implementing locks

= To implement, delay completion of all memory accesses
until all invalidations caused by the access are completed

= Reduces performance!

s Alternatives:

= Program-enforced synchronization to force write on processor to
occur before read on the other processor

= Requires synchronization object for A and another for B
= “Unlock” after write
= “Lock” after read
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Relaxed consistency models

s Rules:
[ ] X — Y

= Operation X must complete before operation Y is done

= Sequential consistency requires:
s R- W R->RW-RW->W

= Relaxing
1. Relax W —> R

“Total store ordering”

2. Relax W —> W

“Partial store order”

3. Relax R -Wand R - R

uononposu| Uy :Aaus1sisuo)d AIOWwa|A JO S|ISPON

“Weak ordering” and “release consistency”




Relaxed consistency models

s Consistency model is multiprocessor specific

= Programmers will often implement explicit
synchronization

Aouajsisuo) Alowsy JO S|I9POIAN

s Speculation gives much of the performance advantage o=
relaxed models with sequential consistency

s Basic idea: if an invalidation arrives for a result that has not beer
committed, use speculation recovery
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Multiprocessing and multithreading

= Performance gains on an Intel i/

= Three benchmarks
s TPC - C (transaction processing)
= SPECJBB (SPEC Java Business Benchmark)
« SPECWED99

;enchmarl-: Per-thread CPI Per-core CPl  Effective CPI for eight cores Effective IPC for eight cores
TPC-C 1.2 1.8 0.225 4.4
SPECJBB 5.6 1.40 0.175 57
SPECWeb99 6.6 1.65 0.206 48

—

Figure 5.25 The per-thread CPI, the per-core CPI, the effective eight-core CPI, and the effective IPC (inverse of
CPI) for the eight-core Sun T1 processor.
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Figure 5.26 A comparison of SMT and single-thread (ST) performance on the eight-processor IBM eServer p5
575. Note that the y-axis starts at a speedup of 0.9, a performance loss. Only one processor in each Powers core is
active, which should slightly improve the results from SMT by decreasing destructive interference in the memory
system. The SMT results are obtained by creating 16 user threads, while the ST results use only eight threads; with
only one thread per processor, the PowerS is switched to single-threaded mode by the OS. These results were col-
lected by John McCalpin of IBM. As we can see from the data, the standard deviation of the results for the SPECfpRate
is higher than for SPECintRate (0.13 versus 0.07), indicating that the SMT improvement for FP programs is likely to
vary widely.
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Figure 5.28 The performance on the SPECRate benchmarks for three multicore processors as the number of
processor chips is increased. Notice for this highly parallel benchmark, nearly linear speedup is achieved. Both plots
are on a log-log scale, so linear speedup is a straight line.
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Figure 5.29 The performance on the SPECjbb2005 benchmark for three multicore
processors as the number of processor chips is increased. Notice for this parallel
benchmark, nearly linear speedup is achieved.
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