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Flynn’s Taxonomy

SISD - Single instruction stream, single data stream

SIMD - Single instruction stream, multiple data streams
= New: SIMT — Single Instruction Multiple Threads (for GPUS)

MISD - Multiple instruction streams, single data stream
= No commercial implementation

MIMD - Multiple instruction streams, multiple data streams

= Tightly-coupled MIMD
= Loosely-coupled MIMD
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Advantages of SIMD architectures
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1. Can exploit significant data-level parallelism for:
1. matrix-oriented scientific computing
2. media-oriented image and sound processors

2. More energy efficient than MIMD

1. Only needs to fetch one instruction per multiple data
operations, rather than one instr. per data op.

2. Makes SIMD attractive for personal mobile devices
3. Allows programmers to continue thinking sequentially

s SIMD/MIMD comparison. Potential speedup for SIMD
twice that from MIMID!

= X86 processors - expect two additional cores per chip per year
= SIMD - width to double every four years




SIMD parallelism
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= SIMD architectures
= A. Vector architectures
= B. SIMD extensions for mobile systems and multimedia applications
= C. Graphics Processor Units (GPUS)
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Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for
x86 computers. This figure assumes that two cores per chip for MIMD will be added every two years and the
number of operations for SIMD will double every four years.
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A. Vector architectures

= Basic idea:
= Read sets of data elements into “vector registers’
= Operate on those registers
= Disperse the results back into memory
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= Registers are controlled by compiler
= Used to hide memory latency
= Leverage memory bandwidth




Example of vector architecture

VMIPS =2 MIPS extended with vector instructions
Loosely based on Cray-1

Vector registers
= Each register holds a 64-element, 64 bits/element vector
= Register file has 16 read ports and 8 write ports
Vector functional units — FP add and multiply
= Fully pipelined
= Data and control hazards are detected
Vector load-store unit
= Fully pipelined
= One word per clock cycle after initial latency
Scalar registers

= 32 general-purpose registers
= 32 floating-point registers
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Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like
MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units. This
chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector units
for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes these
units; however, we will not be discussing these units. The vector and scalar registers have a significant number of
read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick grey lines)
connects these ports to the inputs and outputs of the vector functional units.
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VMIPS Instructions

s ADDVV.D: add two vectors.
s ADDVS.D: add vector to a scalar

m LV/SV: vector load and vector store from address

s Rx - the address of vector X
= Ry - the address of vector Y

s Example: DAXPY (double precision a*X+Y) = 6 instructions
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L.D FO,a , load scalar a

LV V1,Rx ; load vector X
MULVS.D V2,V1,FO , vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4, VvV2,V3 ; add

SV Ry,V4 ; store the result

Assumption: the vector length matches the number of vector operations — no
loop necessary.




DAXPY using MIPS instructions

Example: DAXPY (double precision a*X+Y)
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L.D FO,a ; load scalar a

DADDIU R4,Rx,#512 ; last address to load
Loop: L.D F2,0(Rx) ; load X[i]

MUL.D F2,F2,FO ;a X X]i

L.D F4,0(Ry) ; load YTi]

ADD.D F4,F2,F2 ca X X[i] + YI[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU RXx,RX,#8 ; Increment index to X

DADDIU Ry,Ry,#8 ; Increment index to Y

SUBBU R20,R4,Rx , compute bound

BNEZ R20,Loop ; check if done

= Requires almost 600 MIPS ops when the vectors have 64
elements> 64 elements of a vector x 9 ops




Execution time

= Vector execution time depends on:
= Length of operand vectors

= Structural hazards

= Data dependencies
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= VMIPS functional units consume one element per clock cycle
- EXxecution time is approximately the vector length

= Convoy -2 Set of vector instructions that could potentially
execute together




Chaining and chimes

s Chaining

= Allows a vector operation to start as soon as the individual
elements of its vector source operand become available
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s Chime
= Unit of time to execute one convey
= [N conveys executes in m chimes
= For vector length of n, requires m x n clock cycles

= Seguences with read-after-write dependency hazards
can be in the same convey via chaining




Example
LV V1,Rx ;load vector X
MULVS.D V2,V1,FO ;vector-scalar multiply
LV V3,Ry Jload vector Y
ADDVV.D V4.\V2\V3 ,add two vectors
SV Ry,V4 ,store the sum

Three convoys:

1 LV MULVS.D = first chime
2 LV ADDVV.D - second chime
3 SV - third chime

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles
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Challenges

= The chime model ignores the vector start-up time determined by
the pipelining latency of vector functional units

= Latency of vector functional units. Assume the same as Cray-1
= Floating-point add =>» 6 clock cycles
= Floating-point multiply =» 7 clock cycles
= Floating-point divide =» 20 clock cycles
= Vector load =>» 12 clock cycles

S81NJ281Yy2Iy J0109A




Optimizations

1. Multiple Lanes - processing more than one element per clock cycle
2. Vector Length Reqisters = handling non-64 wide vectors
3. Vector Mask Reqisters - handling IF statements in vector code

2. Memory Banks - memory system optimizations to support vector
pProcessors

5. Stride = handling multi-dimensional arrays
6. Scatter-Gather - handling sparse matrices
7. Programming Vector Architectures - program structures affecting

performance
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Single versus multiple add pipelines
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2. VLR and MVL

= VLR ->Vector Length Register; MVL - Max Vector Length

= Vector length:
= Not known at compile time?
= Not multiple of 647
= Use strip mining for vectors over the maximum length:
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low = 0O;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; ) <= (n/MVL); j=j+1) { [*outer loop*/

for (i = low; i < (low+VL); i=i+1) [*runs for length VL*/

Y[i]=a* X[i] + Y[i] ; [*main operation*/

low = low + VL; [*start of next vector*/

VL = MVL,; [*reset length to maximum vector length*/
} Vaweofi 0 12 3 .. .. mm

|
Rengeofi 0 m  (maMVL)(ma2xMVL) ... ... (¢-MVL)

(m-1) (m-1)  (m-1)  (m-1) (n-1)
+MVL  +2=xMVL +3=MVL




3. Vector mask registers

= Handling IF statements in a loop
for (i=0; i< 64; i=i+1)
if (X[i] = 0)
X[i] = X[1] = Y[iJ;
m If conversion ->use vector mask register to “disable/select”
vector elements
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LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y into V2

L.D FO,#0 ;load FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i)!=FO0
SUBVV.D V1,Vv1,Vv2 ;subtract under vector mask
SV Rx,V1 ;store the result in X

s GFLOPS rate decreases!




4. Memory banks

= Memory system must be designed to support high
bandwidth for vector loads and stores

s Spread accesses across multiple banks
= Control bank addresses independently
= Load or store non-sequential words
= Support multiple vector processors sharing the same memory
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= Example:
= 32 processors, each generating 4 loads and 2 stores/cycle
= Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

= How many memory banks needed?
= 32 processors x 6 =192 accesses,
= 15ns SDRAM cycle /2.167ns processor cycle=7 processor cycles
= 7 X192 >1344!




5. Stride = multiple dimensional arrays

= Technique to fetch vector elements that are not adjacent in memory

= Stride - the distance between elements to be gathered in one register.

= Example (recall that in C an array is stored in major row order!!)

for (i=0;i<100; i=i+1)
for (j =0; ) <100; j=j+1) {

Alib] = 0.0;
for (k = 0; k < 100; k=k+1)
ANl = ADjD] + BOJ[K] * DIKO];
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}

= Must vectorize multiplication of rows of B with columns of D

s Use non-unit stride; D’s stride is 100 double words (800 bytes); B’s
stride is one double word (8 bytes)

= Bank conflict (stall) occurs when the same bank is hit faster than bank
busy time:
= #banks / LCM(stride, #banks) < bank busy time (in # of cycles)




Stride example

= Given
= 8 memory banks
= bank busy time of 6 cycles
= total memory latency of 12 cycles.
= Questions: How long will it take to complete a 64-element vector load
1. With a stride of 17?
2. With a stride of 327?

m Answers:

1. Stride of 1: number of banks is greater than the bank busy time, so it takes
12 + 64 = 76 clock cycles = 76/64 = 1.2 cycle for each vector element

2. Stride of 32: the worst case scenario happens when the stride value is a
multiple of the number of banks, which this is! Every access to memory will
collide with the previous one! Thus, the total time will be:

12+ 1+ 6 *63 =391 clock cycles> 391/64 = 6.1 clock cycles per vector
element!
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6 Scatter-gather

s Consider sparse vectors A & C and vector indices K & M.
A and C have the same number (n) of non-zeros:
for (i=0;i<n; i=i+1)
A[K[I] = A[K[]] + CIM[]];
Ra, Rc, Rk and Rm the starting addresses of vectors
s Use index vector:
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LV VK, Rk ‘load K

LVI Va, (Ra+Vk) load A[K(]]
LV Vm, Rm ‘load M

LVI Ve, (Re+Vm) ;load C[M[]]
ADDVV.D Va, Va, Vc ‘add them

SVI (Ra+Vk), Va ;store A[K]]]




{ Programming vector architectures

= Compilers can provide feedback to programmers
= Programmers can provide hints to compiler
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Operations executed  Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized  with programmer aid hint optimization
BDNA 096.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLO52 91.5% 88.7% N/A
ARC3D 01.1% 92.0% 1.01
SPECT77 90.3% 90.4% 1.07
MDG 87.7% 04.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 01.2% 3.02
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06

QCD 4.2% 75.1% 2.15




Summary of vector architecture

= Optimizations:
= Multiple Lanes: > 1 element per clock cycle
= Vector Length Reqisters: Non-64 wide vectors
= Vector Mask Regqisters: IF statements in vector code

= Memory Banks: Memory system optimizations to
support vector processors

= Stride: Multiple dimensional matrices
= Scatter-Gather: Sparse matrices
= Programming Vector Architectures: Program
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structures affecting performance




Exercise

Consider the following code, which multiplies two vectors of length 300 that
contain single-precision complex values:
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For (i=0; i<300; i++) {
c_re[ilj=a_re[i]*b_re[i] —a_iml[i] * b_im[i];
c_im[i] =a_re[i]*b_im[i] + a_iml[i] * b_re[i];

The processor runs at 700 MHz and has a maximum vector length of 64.

~  What is the arithmetic intensity of this kernel (i.e., the ratio of
floating-point operations per byte of memory accessed)?

s. Convert this loop into VMIPS assembly code using strip mining.

c. Assuming chaining and a single memory pipeline, how many
chimes are required?
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Exercise — arithmetic intensity Q
This code reads four 1] $VL,44 # perform the first 44 ops 5
floats (4 Iv) and writes 11 $r1,0 # initialize index 2.
two floats (2 sv) for loop: Tv $vl,a re+$rl # load a re §
every six FLOPs (4 v $v3,b re+$rl # load b re ol
mulvv.s + 1 subvv.s + mulvv.s $v5,$v1,$v3  # a+re*b re )
1 addwv.s). lv $v2,a_im+rl # load a_im @
Arithmetic intensity = Tv $v4,b im+$rl # load b_im
(4+2)/6 = 1. mulvv.s $v6,$v2,$v4  # a+im*b_im
subvv.s $v5,$v5,%v6  # at+re*b re - a+im*b_im
Assume MVL = 64 = SV $v5,c_re+$rl # stor‘S c_re
300 mod 64 = 44 mulvv.s $vh,$vl,$v4  # a+1j‘e b im
mulvv.s $v6,$v2,$v3  # a+im*b re
addvv.s $v5,$v5,%v6  # at+re*b im + a+im*b _re
SV $v5,c_im+$rl # store c_im
bne $r1,0,else # check if first iteration
addi $r1,$rl1,#44 # first iteration,
increment by 44
j Toop # guaranteed next iteration
else: addi $r1,$r1,#256 # not first iteration,

increment by 256
skip: blt $r1,1200,Toop # next iteration?




Exercise - convoys

1. mulvv.s

2.lv mulvv.s

3. subwv.s
4. mulvv.s

5. mulvv.s

6. addvv.s

6 chimes

v #are*b re
# (assume already loaded),
#load a_im
#load b _ im,a im*b_im
Sv  # subtract and store c_re
Iv #are*b re,
# load next a_re vector
Iv #a im*b re,
# load next b_re vector
sv  #addand store C_im

Ti

Ti
lToop: 1v

Tv

mulvv.

Tv

Tv
mulvv.
subvv.
SV
mulvv.
mulvv.
addvv.
SV
bne
addi

j Toop
else: addi

skip: blt

$VL,44
$r1,0
$vl,a re+frl
$v3,b re+$rl
$v5,$v1, $v3
$v2,a_im+$rl

$va,b im+$rl
$v6,5v2,$vd
$v5,$v5,$v6
$v5,c re+frl
$v5,$v1, $va
$v6,$v2,$v3
$v5,$v5,$v6
$v5,c_imtfrl
$r1,0,else

$r1,$rl, #44

$r1,$r1,#256
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# perform the first 44 ops
# initialize index

# load a_re

# load b re

# atre*b re

# load a_im

# load b_im

# atim*b_im

# atre*b re - a+im*b_im

# store c_re

# atre*b im

# atim*b_re

# atre*b im + a+im*b re

# store c_im

# check if first iteration
# first iteration,
increment by 44

# guaranteed next iteration
# not first iteration,
increment by 256

$r1,1200,100p # next iteration?




B. SIMD extensions for media apps

= Media applications operate on data types narrower than the
native word size.
= Graphics: 3x8-bit colors, 8-bit for transparency
= Audio: 8/16/24 bit/sample

s Disconnect carry chains to “partition” adder.

= Example: a 256 adder can be partitioned to perform simultaneously:
= 32 x 8-bit additions
= 16 X 16-bit additions
= 8 X 32-bit additions
= 4 X 64-bit additions

= Limitations, compared to vector instructions:
= Number of data operands encoded into op code
= No sophisticated addressing modes (strided, scatter-gather)
= No mask registers
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SIMD extension to x86-64 implementations

s Intel MMX (1996)
= Eight 8-bit integer ops or four 16-bit integer ops
s Streaming SIMD Extensions: (SSE) (1999), SSE3 (2004),SSE4 (2007)
= Eight 16-bit integer ops
= Four 32-bit integer/fp ops or two 64-bit integer/fp ops
= Advanced Vector Extensions (AVE) (2010)
= Four 64-bit integer/fp ops
= Operands must be consecutive and at aligned memory locations
= Generally designed to accelerate carefully written libraries rather

than for compilers.

= Advantages over vector architecture:
= Cost little to add to the standard ALU
= Easy to implement
= Require little extra state - easy for context-switching
= Require little extra memory bandwidth
= No virtual memory problem of cross-page access and page-fault
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AVX Instruction Description

VADDPD Add four packed double-precision operands - |
VSUBPD Subtract four packed double-precision operands T 8
VMULPD Multiply four packed double-precision operands o
VDIVPD Divide four packed double-precision operands

VFMADDPD Multiply and add four packed double-precision operands o
VFMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, ...
VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register

Figure 4.9 AVX instructions for x86 architecture useful in double-precision floating-point programs. Packed-
double for 256-bit AVX means four 64-bit operands executed in SIMD mode. As the width increases with AVX, itis
increasingly important to add data permutation instructions that allow combinations of narrow operands from dif-
ferent parts of the wide registers. AVX includes instructions that shuffle 32-bit, 64-bit, or 128-bit operands within a
256-bit register. For example, BROADCAST replicates a 64-bit operand 4 times in an AVX register. AVX also includes a
large variety of fused multiply-add/subtract instructions; we show just two here.




n
Example: SIMD code for DXPY; Y=Y +a X8
s 256 — bit SIMD multimedia instructions added to MIPS. ‘2
= .4D - instructions operating on 4 double precision operands at once. ' §
L.D FO,a ;load scalar a <
MOV F1, FO ;copy a into F1 for SIMD MUL %
MOV F2, FO ;copy a into F2 for SIMD MUL [T
MOV F3, FO ;copy a into F3 for SIMD MUL 14
DADDIU R4,Rx,#512 ‘last address to load %-
Loop: L.4D F4,0[RX] Jload X[i], X[i+1], X[i+2], X[i+3] i
MUL.4D F4,F4,FO ;axX[i],axX[i+1),axX[i+2],axX[i+3] <
L.4D F8.0[RY] Joad Y[, Y[i+1], Y[i+2], Y[i+3] =
ADD.4D F8,F8,F4 axX[i]+Y[il, ..., axX[i+3]+Y[i+3] %
S.4D F8,0[Ry] ;store into Y[i], Y[i+1], Y[i+2], Y[i+3] ;%
DADDIU RX,RX,#32 ;increment index to X
DADDIU Ry,Ry,#32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound

BNEZ R20,Loop ;,check if done




Roofline performance model

= Basic idea:
= Peak floating-point throughput as a function of arithmetic intensity
= Ties together floating-point performance and memory performance

= Roofline: on the sloped portion of the roof the performance is limited
by the memory bandwidth, on the flat portion it is limited by arithmeti
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Intensity
= Arithmetic intensity - Floating-point operations per byte
read o) Otog) oM
Structured | Structured methods
e grics

(Stencils, (Lattice
PDEs) methods)

= Dense matrix operations scale with problem size but sparse matrix
operations do not!!




Examples

= Attainable GFLOPs/sec
Min = (Peak Memory BW X Arithmetic Intensity, Peak
Floating Point Performance)

Intel Core i7 920
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C. Graphical Processing Unit - GPU

Given the hardware invested to do graphics well, how can it
be supplemented to improve performance of a wider range
of applications?

Basic idea:

= Heterogeneous execution model
= CPU is the host, GPU is the device

= Develop a C-like programming language for GPU
=« Compute Unified Device Architecture (CUDA)
= OpenCL for vendor-independent language
= Unify all forms of GPU parallelism as CUDA thread

» Programming model: “Single Instruction Multiple Thread”
(SIMT)
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hreads, blocks, and grid

= A thread is associated with each data element
= CUDA threads = thousands of threads are utilized to various styles of
parallelism: multithreading, SIMD, MIMD, ILP
= Threads are organized into blocks

= Thread Blocks: groups of up to 512 elements

=  Multithreaded SIMD Processor: hardware that executes a whole thread
block (32 elements executed per thread at a time)

= Blocks are organized into a grid
= Blocks are executed independently and in any order

= Different blocks cannot communicate directly but can coordinate using
atomic memory operations in Global Memory
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s Thread management handled by GPU hardware not by

applications or OS
= A multiprocessor composed of multithreaded SIMD processors
= A Thread Block Scheduler




NVIDIA GPU architecture

= Similarities to vector machines:
= Works well with data-level parallel problems
= Scatter-gather transfers
= Mask registers
= Large register files
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= Differences:
= No scalar processor
= Uses multithreading to hide memory latency

=« Has many functional units, as opposed to a few deeply pipelined
units like a vector processor




xample: multiply two vectors of length 8192

s Grid 2 Code that works over all elements

s Thread block-> analogous to a strip-mined vector loop with
vector length of 32. Breaks down the vector into
manageable set of vector elements

32 elements/thread x 16 SIMD threads/block - 512 elements/block
SIMD instruction executes 32 elements at a time
Grid size = 8192vector elements / 512 elements/block = 16 blocks
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= Thread block scheduler - assigns a thread block to a

multithreaded SIMD processor

s Current-generation GPUs (Fermi) have 7-15 multithreaded
SIMD processors




MI<

MORGAN KAUFMANN

Threads, blocks, and grid example

Grid

AL 0 ]=B[ 0 1*cC[ 0
ssp |A[ 1 1=8B[ 1 ]=*c[ 1
Threado | = .
A[ 31 1=B[ 31 ] *c[ 31
Al 32 1=8B[ 32 ] *cC[ 32
ssMp | Al 33 1=B[ 33 ]*cC[ 33
Thread |TPreadl |
Block Al 63 ]1=B[ 63 ] *C[ 63
0 AL 64 1=B[ 64 ] *C[ 64
A[ 4791 =B [ 479 ] * C[ 479
A[ 480] =B [ 480 ] * C[ 480
SIMD ["A[ 4817 =B 481 ] * C[ 481
Threadl [ ] [ 481 1 [ 48
A[ 5111 =B[ 511 ] * C[ 511
A[ 512] =B [ 512 ] * C[ 512
A[ 7679] =B [ 7679 ] * C[ 7679
A[ 7680] =B [ 7680 ] * C[ 7680
SIMD | AL 76817 =B [ 7681 ] * C[ 7681
Thread0 [ = .
A[ 77111 =B [7711 ] * C[ 7711
A[ 77121 =B [7712 ] * C[ 7712
SIMD | Al 77131 =B [7713 ] * C[ 7713
Thread Thread I e . .. .. . e Yy
Block A[ 77431 =B [7743 ] * C[ 7743
15 AL 7744] =B [ 7744 ] * C[ 7744
A[ 8159] =B [ 8159 ] * C[ 8159
A[ 8160] =B [ 8160 ] * C[ 8160
SIMD "l 8161] =B [ 8161 ] * C[ 8161
Threadl
A[ 8191] =B [8191 ] * C[ 8191
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V() V(1) V(2) V(31) V(32) V(33)

V(34)

V(63)

V(480)

V(481)

V/(8130)

V(511)

Thread 0

(32 vector elements)

Thread 1

(32 vector elements)

\

The thread block scheduler
schedules thread blocks to
multithreaded SIMD processors

A multithreaded SIMD processor has

multiple lines (L1- L16 in this example).

The threads of the block are assigned
to the lines by the thread scheduler
and are processed one at a time

Thread block 0

Thread block scheduler

Multithreaded
SIMD processor 15
Thread scheduler

Multithreaded
SIMD processor 1

Thread scheduler

Thread 15

(32 vector elements)

—

Thread block 15




Photo: Judy Schoonmaker

SIMD thread scheduler

Time
N N Y N Y N I N T I O I I |

SIMD thread 8 instruction 11
T Y Y Y Y Y YYYYYYYVYVY

| I S O OO I PO [ [N [ O I O O IO O |
'SIMD thread 1 instruction 42
Y Y Y Y Y YYYYYYYYYVY

N I N I S I N N Sy o

SIMD thread 3 instruction 95
EEEEREEEEEEEEERERE

N I I N Y A |
instruction 12

Figure 4.16 Scheduling of threads of SIMD instructions. The scheduler selects a
ready thread of SIMD instructions and issues an instruction synchronously to all the
SIMD Lanes executing the SIMD thread. Because threads of SIMD instructions are
independent, the scheduler may select a different SIMD thread each time.

Copyright © 2012, Elsevier Inc. All rights reserved.
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NVIDIA GPU memory structures

Each SIMD Lane has private section of off-chip DRAM

— “Private memory”’, not shared by any other lanes
— Contains stack frame, spilling registers, and private variables
— Recent GPUs cache in L1 and L2 caches

Each multithreaded SIMD processor also has local memory that
IS on-chip
— Shared by SIMD lanes / threads within a block only

The off-chip memory shared by SIMD processors is GPU
Memory

— Host can read and write GPU memory

43
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CUDA Thread

Per-CUDA Thread Private Memory

Thread block

—> Per-Block
= Local Memory

Grid 0 Sequence

LA
&Zccceeeec
> >
ecccccecc [ [« &
3> 5> 5> 5> H
[« & [« &
>>) »>) o> >
[« (<« < ... &
vl 52 ) 52
¥y ¥ ¥ ¥ 144 ¥ ¥ ¥ ¥ ¥ ldd

— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1

e T o
P P ccaaaa« fcaaacaaa«s

> > >
[« L« <L [«

5> 5> > > 4—»
< & (<« <

) 2> 2> 27
<L [« <L LR A (&«
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erminology

s [ hreads of SIMD instructions

= Each has its own PC
= Thread scheduler uses scoreboard to dispatch
= No data dependencies between threads!

= Keeps track of up to 48 threads of SIMD instructions
= Hides memory latency

s [hread block scheduler =2 schedules thread blocks

s1un Buissadold [eaiydels

to SIMD processors

= Within each SIMD processor:
= 32 SIMD lanes
= Wide and shallow compared to vector processors




Example

= NVIDIA GPU has 32,768 registers
= Divided into lanes
= A SIMD thread has up to:
= 64 vector registers of 32 32-bit elements
= 32 vector registers of 32 64-bit elements

= Fermi has 16 physical SIMD lanes, each containing 2048
registers (2048 x 16 = 32,768)
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Warp scheduler

Scoreboard
, Warp No. | Address | SIMD instructions | Operands?

Instruction . 1 42 Id.global.f64 Ready

cache 1 43 mul.f64 No
3 95 shl.s32 Ready

' 3 96 add.s32 No
8 11 Id.global.f64 Ready
8 12 Id.global.f64 Ready

1

!

Instruction register

l |
I T T s S T D B R DR D e A S A

e e e R S R

Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters

TKx32 [1Kx32 [1Kx32 [1Kx32 [1Kx32 | 1TKx32 | 1Kx32 | 1Kx32 | 1K= 32 [1Kx32 | 1Kx32 [ 1Kx32 [1Kx32 | 1TKx32 | 1IKx32 | 1IKx32

Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store | store | store | store | store | store | store | store | store | store | store | store | store | store | store | store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit

t [ ¢ 1 ¢ [ ¢ ¢ ¢4 [ ¢4 ¢]4¢ ¢4 74744

\

l Address coalescing unit | | Interconnection network |
\ Y
To Global
Local Memory
64 KB Memory

Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor with 16
SIMD lanes. The SIMD Thread Scheduler has, say, 48 independent threads of SIMD
instructions that it schedules with a table of 48 PCs.

Copyright © 2012, Elsevier Inc. All rights reserved.



NVIDIA ISA -- PTX
E PTX - Parallel Thread Execution

m A PTX instruction describes the operation of a single CUDA thread!!

m Like x86 instructions PTX instructions translate to an internal format
= X86 - translation done by hardware at execution time
= PTX - translation done by software at compile time.

s The format of a PTX instruction: opcode.type d,a,b,c
= d -> destination operand
= a, b, c > source operands

s1un Buissadold [eaiydels

Type type Specifier
Untyped bits 8, 16, 32, and 64 bits .b8, .bl6, .b32, .b64
Unsigned integer 8, 16, 32, and 64 bits .u8, .ulée, .u32, .ubd
Signed integer 8, 16, 32, and 64 bits .8, .sl6, .s32, .s64
Floating Point 16, 32, and 64 bits .fl6, .f32, .f64

E—

= Use virtual registers
= NVIDIA act as co-processors. Similar to I/O units




PTX arithmetic instructions

_ ;;up Instruction Example Meaning Comments

- arithmetic .type = .s32, .u32, .f32, .s64, .ubd, .f64
add.type add.f32 d, a, b d=a#+b;
sub.type sub.f32 d, a, b d=a-b;
mul.type mul.f32 d, a, b d=a*b;
mad.type mad.f32 d, a, b, ¢ d=a*b+c; multiply-add
div.type div.f32 d, a, b d=a/b; multiple microinstructions
rem. type rem.u32 d, a, b d=a5%b; integer remainder

acithmetic 30 yPe ) abs.f32 d, a d = |a|;
neg.type neg.f32 d, a d =0 - a;
min.type min.f32 d, a, b d = (a<b)? a:b; floating selects non-NaN
max. type max.f32 d, a, b d=(a>b)? a:b; floating selects non-NaN
setp.cmp.type setp.1t.f32 p, a, b p=(a<hbh); compare and set predicate
numeric .cmp = eq, ne, It, le, gt, ge; unordered cmp = equ, neu, 1tu, leu, gtu, geu, num, nan
mov.type mov.b32 d, a d = a; move
selp.type selp.f32 d, a, b, p d = p? a: b; select with predicate
cvt.dtype.atype cvt.f32.532 d, a d = convert(a); convert atype to dtype
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X logical, memory access, and control flow

logic.type = .pred,.b32, .b64

and. type and.b32 d, a, b d=aé&hb;
or.type or.b32 d, a, b d=a|b;
Logical xor.type xor.b32 d, a, b d=a"b;
not.type not.b32 d, a, b d = ~a; one's complement
cnot. type cnot.b32 d, a, b d = (a==0)7 1:0; C logical not
shl.type sh1.b32 d, a, b d = a << b; shift left
shr.type shr.s32 d, a, b d=a > b shift right
memory.space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .blf, .b32, .béd
1d.space.type 1d.global.b32 d, [a+off] d = *(atoff); load from memory space
Memory st.space, type st.shared.b32 [d+off], a *(d+off) = a; store to memory space
Access tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup
atom.global.add.u32 d,[a], b atomic { d = *a; *a = atomic read-modify-write
atom.spc.op.type atom.global.cas.b32 d,[a], b, cop(*a, b); } operation
atom.op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type - .b32
branch @p bra target if (p) goto target; conditional branch
Control call call (ret), func, (params) ret = func(params); call function
Flow ret ret return; return from function call
bar.sync bar.sync d wait for threads barrier synchronization
exit - exit exit; terminate thread execution
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Parallel Thread Execution (PTX) example

m One CUDA thread, 8192 of these created!

shl.s32 R8, blockldx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadldx ; R8 =1 =my CUDA thread ID
|d.global.f64RDO, [X+R8] ; RDO = X]i]

|d.global.f64RD2, [Y+R8] ; RD2 = Y]i]

mul.f64 ROD, RDO, RD4 ; Product in RDO = RDO * RD4 (scalar a)
add.f64 ROD, RDO, RD2 ; Sum in RDO = RDO + RD2 (YT[i])
st.global.f64 [Y+R8], RDO ; Y[i] = sum (X[i]*a + Y]i])
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Conditional branching

s GPU branch hardware uses:
= Internal masks

= Branch synchronization stack
= Entries consist of masks for each SIMD lane
» I.e. which threads commit their results (all threads execute)

= Instruction markers to manage when a branch diverges into multiple
execution paths

= Push on divergent branch
= ...and when paths converge
= Act as barriers

s1un Buissadold [eaiydels

= Pops stack

s Per-thread-lane 1-bit predicate register, specified by
programmer




)
Example 8
-
g.
i il 1= -
if (X[i] ! .0) | | o
X[i] = X[i] = YTi; 9
else X[i] = Z]i]; o)
n
D,
>
ld.global.f64  RDO, [X+R8] : RDO = X[i] ‘2
setp.neq.s32 P1, RDO, #0 ; P1 is predicate register 1 -]
@!P1, bra ELSE1, *Push : Push old mask, set new mask bits o
; if P1 false, go to ELSE1
|d.global.f64 RD2, [Y+R8] ; RD2 = YTi]
sub.f64 RDO, RDO, RD2 ; Difference in RDO
st.global.f64 [X+R8], RDO ; X[i] = RDO
@P1, bra ENDIF1, *Comp ; complement mask bits
; if P1 true, go to ENDIF1
ELSEL: |d.global.f64 RDO, [Z+RS8] ; RDO = Z]i]
st.global.f64 [X+R8], RDO ; X[i] = RDO
ENDIF1: <next instruction>, *Pop ; pop to restore old mask

Note: a thread has 64 vector components, each a 32 bit floating point




NVIDIA GPU memory structures

= Each SIMD Lane has private section of off-chip DRAM
= "Private memory”, not shared by any other lanes
= Contains stack frame, spilling registers, and private variables
= Recent GPUs cache in L1 and L2 caches

s Each multithreaded SIMD processor also has local
memory that is on-chip

= Shared by SIMD lanes / threads within a block only

= The off-chip memory shared by SIMD processors is GPU
Memory

s1un Buissadold [eaiydels

= Host can read and write GPU memory




CUDA Thread

Per-CUDA Thread Private Memory

Thread block

Per-Block
Local Memory

Grid 0 Sequence
> :: > EE <
— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1
I L >
ii >> :: 5> zi > |
Y

Figure 4.18 GPU Memory structures.

« GPU Memory -> shared by all Grids (vectorized loops),

» Local Memory - shared by all threads of SIMD instructions within a thread
block (body of a vectorized loop).

* Private Memory —>private to a single CUDA thread.

Copyright © 2012, Elsevier Inc. All rights reserved.
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Fermi architecture innovations

s Each SIMD processor has
= Two SIMD thread schedulers, two instruction dispatch units

= Two sets of 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16
load-store units, 4 special function units

= Thus, two threads of SIMD instructions are scheduled every two
clock cycles

s Fast double precision: gen- 78 2515 GFLOPs for DAXPY

s Caches for GPU memory: I/D L1 per SIMD processor and shared L2
s 64-bit addressing and unified address space: C/C++ ptrs

= Error correcting codes: dependability for long-running apps

s Faster context switching: hardware support, 10X faster

s Faster atomic instructions: 5-20X faster than gen-
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SIMD thread scheduler SIMD thread scheduler
l Instr n dispa ;

SIMD thread 9 instruction 11

SIMD thread 2 instruction 42 SIMD thread 3 instruction 33
SIMD thread 14 instruction 95 SIMD thread 15 instruction 95
- -

] | |

SIMD thread 8 instruction 12 SIMD thread 9 instruction 12

SIMD thread 8 instruction 11

Time

SIMD thread 14 instruction 96 SIMD thread 3 instruction 34
' SIMD thread 2 instruction 43 SIMD thread 15 instruction 96

Figure 4.19 Block Diagram of Fermi’s Dual SIMD Thread Scheduler.
Compare this design to the single SIMD Thread Design in Figure 4.16.
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Fermi multithreaded SIMD processor

[ SIMD thread scheduler | [ SIMD thread scheduler |

| Diigpatch unit | | Dispatch unit

S1un Buissasoud eaydelo

Fermi streaming multiprocessor (SM)




Corei7- Ratio Ratio

960 GTX 280 GTX 480  280/i7 480/i7
m= Qumber of processing elements (cores or SMs) 4 30 15 75 3.8
Clock frequency (GHz) ‘ 3.2 1.3 1.4 041 044
" Die size ' 263 576 520 22 20
Technology Intel 45 nm TSMC 65nm TSMC40nm 1.6 1.0
'EE;;'_{Chip, not module) 130 130 167 1.0 1.3
Transistors 700 M 1400 M 3030 M 2.0 44
Memory bandwidth (GBytes/sec) 32 141 177 44 5.5
Single-precision SIMD width 4 8 32 20 80
Double-precision SIMD width 2 I 16 0.5 8.0
Peak single-precision scalar FLOPS (GFLOP/Sec) 26 117 63 4.6 2.5
Peak single-precision SIMD FLOPS (GFLOP/Sec) 102 31110933 S15or 1344 3.0-9.1 6.6-13.1
(SP 1 add or multiply) N.A. (311) (515) 3.0)  (6.6)
(SP | instruction fused multiply-adds) N.A. (622) (1344) 6.1)  (13.D
(Rare SP dual issue fused multiply-add and multiply) N.A. (933) N.A. (9.1) --
Peak double-precision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1

Figure 4.27 Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifications. The rightmost columns show the
ratios of GTX 280 and GTX 480 to Core i7. For single-precision SIMD FLOPS on the GTX 280, the higher speed (933)
comes from a very rare case of dual issuing of fused multiply-add and multiply. More reasonable is 622 for single
fused multiply-adds. Although the case study is between the 280 and i7, we include the 480 to show its relationship
to the 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 4.28
because these are DRAM pin bandwidths and those in Figure 4.28 are at the processors as measured by a benchmark
program. (From Table 2 in Lee et al. [2010].)
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Kernel Application 20V IL¥F Lnaracteristics

SGEMM (SGEMM)  Linear algebra Regular Across 2D tiles ~ Compute bound after tiling

Monte Carlo (MC) Computational Regular Across paths Compute bound

finance

Convolution (Conv) Image analysis Regular Across pixels Compute bound; BW bound for
small filters

FFT (FFT) Signal processing  Regular Across smaller Compute bound or BW bound

FFTs depending on size

SAXPY (SAXPY) Dot product Regular Across vector BW bound for large vectors

LBM (LBM) Time migration Regular Across cells BW bound

Constraint solver (Selv) Rigid body physics Gather/Scatter ~ Across constraints Synchronization bound

SpMV (SpMV) Sparse solver Gather Across non-zero  BW bound for typical large
matrices

GIK (GJK) Collision detection Gather/Scatter ~ Across objects Compute bound

Sort (Sort) Database Gather/Scatter Across elements  Compute bound

Ray casting (RC) Volume rendering  Gather Across rays 4-8 MB first level working set;
over 500 MB last level working
set

Search (Search) Database Gather/Scatter ~ Across queries Compute bound for small tree,

BW bound at bottom of tree for
large tree

Histogram (Hist)

Image analysis

Requires conflict Across pixels

detection

Reduction/synchronization
bound

Figure 4.29 Throughput computing kernel characteristics (from Table 1 in Lee et al. [2010].) The name in paren-
theses identifies the benchmark name in this section. The authors suggest that code for both machines had equal
optimization effort.
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GTX 280/
Kernel Units Corei7-960  GTX 280 i7-960
SGEMM GFLOP/sec 94 364 39
MC Billion paths/sec 0.8 1.4 1.8
Conv Million pixels/sec 1250 3500 28
FFT GFLOP/sec 71.4 213 30
SAXPY GBytes/sec 16.8 88.8 53
LBM  Million lookups/sec 85 426 5.0
Solv Frames/sec 103 52 0.5
SpMV GFLOP/sec 49 9.1 1.9
GIJK Frames/sec 67 1020 15.2
Sort Million elements/sec 250 198 0.8
RC Frames/sec b 8.1 1.6
Search Million queries/sec 50 90 1.8
Hist Million pixels/sec 1517 2583 1.7
Bilat Million pixels/sec 83 475 T

Figure 4.30 Raw and relative performance measured for the two platforms. In this
study, SAXPY is just used as a measure of memory bandwidth, so the right unit is
GBytes/sec and not GFLOP/sec. (Based on Table 3 in [Lee et al. 2010].)




Loop-level parallelism

s Focuses on determining whether data accesses in later
iterations are dependent on data values produced in earlier
iterations

= Loop-carried dependence

= Example 1:

for (1I=999; i>=0; i=i-1)
X[i] = X[i] +s;

wislg|rered |ana1-doo buloueyu3 pue bunosaleg

No loop-carried dependence




Loop-level parallelism example 2

for (i=0; i<100; i=i+1) {
Ali+1] = A[i] + C[i]; I* S1 */
Bli+1] = BJ[i] + A[i+1]; /* S2 */

s S1 and S2 use values computed by S1 in previous iteration
s S2 uses value computed by S1 in same iteration

O
®
—t
®
®]
o
2
(@]
8
-]
(oL
T
-
-y
8
2
Q,
-
«Q
—
o
@)
'CI5
—
)
<
@
T
Q
=
L
@
=
3




Loop-level parallelism example 3

for (i=0; i<100; i=i+1) {
Ali] = Al[i] + BJi]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */
}

S1 uses value computed by S2 in previous iteration but dependence
IS not circular so loop is parallel. Transform to:

A[0] = A[0] + BIO];

for (i=0; i1<99; i=i+1) {
Bli+1] = C[i] + D[i];
Ali+1] = A[i+1] + BJ[i+1];

wisig|jesed |ana1-doo buioueyu3 pue bunosiag

}
B[100] = C[99] + D[99];




Loop-level parallelism examples 4 and 5

for (i=0:i<100;i=i+1) {
Alll = B[i] + C[i];
D[i] = Ali] * E[if;

}

= No loop-carried dependence

for (i=1:i<100;i=i+1) {
Y[i] = Y[i-1] + YIi]:

wisig|jesed |ana1-doo buioueyu3 pue bunosiag

}

= Loop-carried dependence in the form of recurrence




Finding dependencies

= Assume that a 1-D array index 1 is affine:
= axli+ b (with constants a and b)
= An n-D array index is affine if it is affine in each dimension

m Assume:
= Storetoaxi+Db,then
= Load fromcxi+d
= Irunsfrommton
= Dependence exists if:
« Given |, ksuchthatm<j<sn,m<k=sn
= Storetoaxj+b,loadfromaxk+d,andaxj+b=cxk+d
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Finding dependencies

s Generally cannot determine at compile time
s Test for absence of a dependence:

s GCD test:
= If a dependency exists, GCD(c,a) must evenly divide (d-b)

= Example:
for (i=0; 1<100; 1=1+1) {
X[2*1+3] = X[2*1]] * 5.0;
}

= Answer: a=2, b=3, c=2, d=0 2GCD(c,a)=2, d-b=-3 = no
dependence possible.
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for (i=0: i<100; i=i+1) {

Y[i]=X[i]/c; /[*S1*
X[i] = X[i] + c; [* S2 */
Z[i] = Y[i] + c; I* S3 */
Y[i]=c-Y[i]; [* S4 */

Finding dependencies example 2

for (i=0; i<100; i=i+1 {

{[i]
X1
Z[i

= X[i]/ c;

i] = X[i] + c;
= T[] +¢;

YJi]

=c— TIi];

= Watch for antidependencies and output

dependencies:
= RAW: S1->S3, S1->S54 on Y[i], not loop-carried
» WAR: S1->S2 on X]i]; S3->S4 on Y][i]
= WAW: S1->S4 on Y]]
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Reductions

Reduction Operation:
for (1I=9999; i>=0; i=i-1)
sum = sum + Xx[i] * y[i];

Transform to...
for (i=9999; i>=0; i=i-1)
sum [i] = x[i] * y[i];
for (i=9999; i>=0; i=i-1)
finalsum = finalsum + sum{i];

Do on p processors:
for (i=999; i1>=0; i=i-1)

finalsum[p] = finalsum[p] + sum[i+1000*p];
Note: assumes associativity!
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1.

Fallacies

GPUs suffer from being co-processors.

The 1/0O device nature of GPUs creates a level of indirection between
the compiler and the hardware and gives more flexibility to GPU
architects who can try new innovations and drop them if not successful.
For example, the Fermi architecture changed the hardware instruction
set without disturbing the NVIDIA software stack:

@ from memory-oriented as x86 to register-oriented like MIPS;
@ from 32-bit to 64-bit addressing

One can get good performance without providing good
memory bandwidth.

Add more threads to improve performance.

If memory accesses of CUDA threads are scattered or not correlated
the memory system will get progressively slower. The CUDA threads
must enjoy locality of memory access.




