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Flynn’s Taxonomy 

 SISD - Single instruction stream, single data stream 

  

 SIMD - Single instruction stream, multiple data streams  
 New: SIMT – Single Instruction Multiple Threads (for GPUs) 

 

 MISD - Multiple instruction streams, single data stream 
 No commercial implementation 

 

 MIMD - Multiple instruction streams, multiple data streams  
 Tightly-coupled MIMD 

 Loosely-coupled MIMD 
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Advantages of SIMD architectures 

1. Can exploit significant data-level parallelism for: 
1. matrix-oriented scientific computing 

2. media-oriented image and sound processors 

2. More energy efficient than MIMD 
1. Only needs to fetch one instruction per multiple data 

operations, rather than one instr. per data op. 

2. Makes SIMD attractive for personal mobile devices 

3. Allows programmers to continue thinking sequentially 

 

 SIMD/MIMD comparison. Potential speedup for SIMD 
twice that from MIMID! 
 x86 processors  expect two additional cores per chip per year 

 SIMD  width to double every four years 
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SIMD parallelism 

 SIMD architectures 
 A. Vector architectures 

 B. SIMD extensions for mobile systems and  multimedia applications 

 C. Graphics Processor Units (GPUs) 
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Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for 

x86 computers. This figure assumes that two cores per chip for MIMD will be added every two years and the 

number of operations for SIMD will double every four years.  
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A. Vector architectures 

 Basic idea: 
 Read sets of data elements into “vector registers” 

 Operate on those registers 

 Disperse the results back into memory 

 

 Registers are controlled by compiler 
 Used to hide memory latency 

 Leverage memory bandwidth 

V
e
c
to

r A
rc

h
ite

c
tu

re
s
 



8 Copyright © 2012, Elsevier Inc. All rights reserved. 

Example of vector architecture 

 VMIPS  MIPS extended with vector instructions 

 Loosely based on Cray-1 

 Vector registers 
 Each register holds a 64-element, 64 bits/element vector 

 Register file has 16 read ports and 8 write ports 

 Vector functional units – FP add and multiply 
 Fully pipelined 

 Data and control hazards are detected 

 Vector load-store unit 
 Fully pipelined 

 One word per clock cycle after initial latency 

 Scalar registers 
 32 general-purpose registers 

 32 floating-point registers 
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Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like 

MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units. This 

chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector units 

for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes these 

units; however, we will not be discussing these units. The vector and scalar registers have a significant number of 

read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick grey lines) 

connects these ports to the inputs and outputs of the vector functional units.  
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VMIPS instructions 

 ADDVV.D:  add two vectors.  

 ADDVS.D:  add vector to a scalar 

 LV/SV:  vector load and vector store from address 
 Rx  the address of vector X 

 Ry  the address of vector Y 

 Example:  DAXPY (double precision a*X+Y)  6 instructions 

L.D  F0,a  ; load scalar a 

LV   V1,Rx  ; load vector X 

MULVS.D  V2,V1,F0 ; vector-scalar multiply 

LV   V3,Ry  ; load vector Y 

ADDVV  V4,V2,V3 ; add 

SV   Ry,V4  ; store the result 
Assumption: the vector length matches the number of vector operations – no 
loop necessary. 
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DAXPY using MIPS instructions 

Example:  DAXPY (double precision a*X+Y) 

  L.D  F0,a  ; load scalar a 

  DADDIU R4,Rx,#512 ; last address to load 

Loop:  L.D  F2,0(Rx ) ; load X[i] 

  MUL.D  F2,F2,F0 ; a x X[i] 

  L.D  F4,0(Ry) ; load Y[i] 

  ADD.D  F4,F2,F2 ; a x X[i] + Y[i] 

  S.D  F4,9(Ry) ; store into Y[i] 

  DADDIU Rx,Rx,#8 ; increment index to X 

  DADDIU Ry,Ry,#8 ; increment index to Y 

  SUBBU  R20,R4,Rx ; compute bound 

  BNEZ  R20,Loop ; check if done 

 

 Requires almost 600 MIPS ops when the vectors have 64 

elements 64 elements of a vector x 9 ops  
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Execution time 

 Vector execution time depends on: 
 Length of operand vectors 

 Structural hazards 

 Data dependencies 

 

 VMIPS functional units consume one element per clock cycle 
 Execution time is approximately the vector length 

 

 Convoy  Set of vector instructions that could potentially 
execute together 
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Chaining and chimes 

 Chaining 
 Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available 

 

 Chime 
 Unit of time to execute one convey 

 m conveys executes in m chimes 

 For vector length of n, requires m x n clock cycles 

 

 Sequences with read-after-write dependency hazards 
can be in the same convey via chaining  
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Example 

LV   V1,Rx   ;load vector X 

MULVS.D V2,V1,F0  ;vector-scalar multiply 

LV   V3,Ry   ;load vector Y 

ADDVV.D V4,V2,V3  ;add two vectors 

SV   Ry,V4   ;store the sum 

 

Three convoys: 

1  LV  MULVS.D    first chime 

2  LV  ADDVV.D   second chime 

3  SV                                        third chime 

 

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 

For 64 element vectors, requires 64 x 3 = 192 clock cycles 
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Challenges 

 The chime model ignores the vector start-up time determined by 

the pipelining latency of vector functional units 

 Latency of vector functional units. Assume the same as Cray-1 

 Floating-point add        6 clock cycles 

 Floating-point multiply  7 clock cycles 

 Floating-point divide     20 clock cycles 

 Vector load                   12 clock cycles 
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Optimizations 

1. Multiple Lanes   processing more than one element per clock cycle 

2. Vector Length Registers  handling non-64 wide vectors 

3. Vector Mask Registers  handling IF statements in vector code 

4. Memory Banks  memory system optimizations to support vector 

processors 

5. Stride   handling multi-dimensional arrays 

6. Scatter-Gather  handling sparse matrices 

7. Programming Vector Architectures  program structures affecting 

performance 
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1. A four lane vector unit 

 VIMPS instructions only allow 

element N of one vector to 

take part in operations 

involving element N from 

other vector registers this 

simplifies the construction of 

a highly parallel vector unit 

 Line  contains one 

portion of the vector 

register file and one 

execution pipeline from 

each functional unit 

 Analog with a highway 

with multiple lanes!! 
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Single versus multiple add pipelines  

 C= A+B 

 One versus four additions per 

clock cycl 

 Each pipe adds the 

corresponding elements of 

the two vectors 

     C(i) = A(i) + B(i) 
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2. VLR and MVL 

 VLR Vector Length Register; MVL  Max Vector Length 

 Vector length: 

  Not known at compile time?  

 Not multiple of 64? 

 Use strip mining for vectors over the maximum length: 

low = 0; 

VL = (n % MVL);                                 /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) {            /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1)       /*runs for length VL*/ 

  Y[i] = a * X[i] + Y[i] ;                      /*main operation*/ 

 low = low + VL;                               /*start of next vector*/ 

 VL = MVL;                                      /*reset length to maximum vector length*/ 

} 
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3. Vector mask registers 

 Handling IF statements in a loop 

 for (i = 0; i < 64; i=i+1) 

  if (X[i] != 0) 

   X[i] = X[i] – Y[i]; 

 If conversion use vector mask register to “disable/select” 

vector elements  
      LV  V1,Rx  ;load vector X into V1 

 LV  V2,Ry  ;load vector Y into V2 

 L.D  F0,#0  ;load FP zero into F0 

 SNEVS.D V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 

 SUBVV.D V1,V1,V2 ;subtract under vector mask 

 SV  Rx,V1  ;store the result in X 

 GFLOPS rate decreases! 
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4. Memory banks 

 Memory system must be designed to support high 

bandwidth for vector loads and stores 

 Spread accesses across multiple banks 

 Control bank addresses independently 

 Load or store non-sequential words 

 Support multiple vector processors sharing the same memory 

 

 Example: 

 32 processors, each generating 4 loads and 2 stores/cycle 

 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns 

 How many memory banks needed? 

 32 processors x 6 =192 accesses,  

 15ns SDRAM cycle /2.167ns processor cycle≈7 processor cycles  

 7 x 192 1344! 
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5. Stride  multiple dimensional arrays 

 Technique to fetch vector elements that are not adjacent in memory 

 Stride  the distance between elements to be gathered in one register. 

 Example (recall that in C an array is stored in major row order!!) 

 for (i = 0; i < 100; i=i+1) 

  for (j = 0; j < 100; j=j+1) { 

   A[i][j] = 0.0; 

   for (k = 0; k < 100; k=k+1) 

   A[i][j] = A[i][j] + B[i][k] * D[k][j]; 

  } 

 Must vectorize multiplication of rows of B with columns of D 

 Use non-unit stride;  D’s stride is 100 double words (800 bytes); B’s 

stride is one double word (8 bytes) 

 Bank conflict (stall) occurs when the same bank is hit faster than bank 

busy time: 

 #banks / LCM(stride, #banks) < bank busy time (in # of cycles) 
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Stride example 

 Given  

 8 memory banks 

 bank busy time of 6 cycles 

 total memory latency of 12 cycles.  

 Questions: How long will it take to complete a 64-element vector load  

1. With a stride of 1? 

2. With a stride of 32? 

 Answers: 

1. Stride of 1: number of banks is greater than the bank busy time, so it takes      

12 + 64 = 76 clock cycles  76/64 = 1.2 cycle for each vector element 

2. Stride of 32: the worst case scenario happens when the stride value is a 

multiple of the number of banks, which this is! Every access to memory will 

collide with the previous one! Thus, the total time will be: 

12 + 1 + 6 * 63 = 391 clock cycles 391/64 = 6.1 clock cycles per vector 

element! 
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6 Scatter-gather 

 Consider sparse vectors A & C and vector indices K & M. 

A and C have the same number (n) of non-zeros: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]];    

Ra, Rc, Rk and Rm the starting addresses of vectors 

 Use index vector: 

 LV  Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)  ;load A[K[]] 

 LV  Vm, Rm  ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D Va, Va, Vc  ;add them 

 SVI  (Ra+Vk), Va  ;store A[K[]] 
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7 Programming vector architectures 

 Compilers can provide feedback to programmers 

 Programmers can provide hints to compiler 
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Summary of vector architecture 

 Optimizations: 

 Multiple Lanes: > 1 element per clock cycle 

 Vector Length Registers: Non-64 wide vectors 

 Vector Mask Registers: IF statements in vector code 

 Memory Banks: Memory system optimizations to 

support vector processors 

 Stride: Multiple dimensional matrices 

 Scatter-Gather: Sparse matrices 

 Programming Vector Architectures: Program 

structures affecting performance 
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Exercise 

Consider the following code, which multiplies two vectors of length 300 that 

contain single-precision complex values: 

 

For (i=0; i<300; i++) { 

 c_re[i] = a_re[i] * b_re[i]  – a_im[i] * b_im[i]; 

 c_im[i] = a_re[i] * b_im[i] + a_im[i] * b_re[i]; 

      

The processor runs at 700 MHz and has a maximum vector length of 64. 

  

A. What is the arithmetic intensity of this kernel (i.e., the ratio of 

floating-point operations per byte of memory accessed)? 

B. Convert this loop into VMIPS assembly code using strip mining. 

C. Assuming chaining and a single memory pipeline, how many 

chimes are required?  
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Exercise – arithmetic intensity 

Copyright © 2012, Elsevier Inc. All rights reserved. 

This code reads four 

floats (4 lv) and writes 

two floats (2 sv) for 

every six FLOPs (4 

mulvv.s + 1 subvv.s + 

1 addvv.s). 

Arithmetic intensity = 

(4+2)/6 = 1. 

 

Assume MVL = 64  

300 mod 64 = 44 
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Exercise - convoys 
 

1. mulvv.s lv      # a_re * b_re  

                                  # (assume already loaded),  

                                  # load a_im 

2. lv       mulvv.s       # load b_im, a_im * b_im 

3. subvv.s sv      # subtract and store c_re 

4. mulvv.s lv       # a_re * b_re,  

                                   # load next a_re vector 

5. mulvv.s lv       # a_im * b_re,  

                                   # load next b_re vector 

6. addvv.s sv       # add and store c_im 

 

6 chimes 
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B. SIMD extensions for media apps 

 Media applications operate on data types narrower than the 

native word size.  

 Graphics: 3x8-bit colors, 8-bit for transparency 

 Audio: 8/16/24 bit/sample 

 Disconnect carry chains to “partition” adder. 

 Example: a 256 adder can be partitioned to perform simultaneously: 

 32 x   8-bit additions 

 16 x  16-bit additions 

 8   x  32-bit additions  

 4   x  64-bit additions    

 Limitations, compared to vector instructions: 

 Number of data operands encoded into op code 

 No sophisticated addressing modes (strided, scatter-gather) 

 No mask registers 
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SIMD extension to x86-64 implementations 
 Intel MMX (1996) 

 Eight 8-bit integer ops or four 16-bit integer ops 

 Streaming SIMD Extensions: (SSE) (1999), SSE3 (2004),SSE4 (2007) 

 Eight 16-bit integer ops 

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops 

 Advanced Vector Extensions (AVE) (2010) 

 Four 64-bit integer/fp ops 

 Operands must be consecutive and at aligned memory locations 

 Generally designed to accelerate carefully written libraries rather  

     than for compilers. 

 Advantages over vector architecture:  
 Cost little to add to the standard ALU  

 Easy to implement 

 Require little extra state  easy for context-switching 

 Require little extra memory bandwidth 

 No virtual memory problem of cross-page access and page-fault 
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Example: SIMD code for DXPY; Y = Y + a X 

 256 – bit SIMD multimedia instructions added to MIPS.  

 .4D  instructions operating on 4 double precision operands at once.  

 L.D  F0,a  ;load scalar a 

 MOV  F1, F0  ;copy a into F1 for SIMD MUL 

 MOV  F2, F0  ;copy a into F2 for SIMD MUL 

 MOV  F3, F0  ;copy a into F3 for SIMD MUL 

 DADDIU R4,Rx,#512 ;last address to load 

Loop:  L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3] 

 MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3] 

 L.4D  F8,0[Ry]  ;load Y[i], Y[i+1], Y[i+2], Y[i+3] 

 ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3] 

 S.4D  F8,0[Ry]  ;store into Y[i], Y[i+1], Y[i+2], Y[i+3] 

 DADDIU Rx,Rx,#32 ;increment index to X 

 DADDIU Ry,Ry,#32 ;increment index to Y 

 DSUBU R20,R4,Rx ;compute bound 

 BNEZ R20,Loop ;check if done 
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Roofline performance model 

 Basic idea: 

 Peak floating-point throughput as a function of arithmetic intensity 

 Ties together floating-point performance and memory performance  

 Roofline: on the sloped portion of the roof the performance is limited 

by the memory bandwidth, on the flat portion it is limited by arithmetic 

intensity 

 Arithmetic intensity  Floating-point operations per byte 

read 

 

 

 

 

 Dense matrix operations scale with problem size but sparse matrix 

operations do not!!  
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Examples 

 Attainable GFLOPs/sec  

    Min = (Peak Memory BW × Arithmetic Intensity, Peak  

               Floating Point Performance) 
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C. Graphical Processing Unit - GPU 

 Given the hardware invested to do graphics well, how can it 

be supplemented to improve performance of a wider range 

of applications? 

 Basic idea: 

 Heterogeneous execution model 

 CPU is the host, GPU is the device 

 Develop a C-like programming language for GPU 

 Compute Unified Device Architecture (CUDA) 

 OpenCL for vendor-independent language 

 Unify all forms of GPU parallelism as CUDA thread 

 Programming model: “Single Instruction Multiple Thread” 

(SIMT) 
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Threads, blocks, and grid 

 A thread is associated with each data element 
 CUDA threads  thousands of threads are utilized to various styles of 

parallelism: multithreading, SIMD, MIMD, ILP 

 Threads are organized into blocks 
 Thread Blocks: groups of up to 512 elements 

 Multithreaded SIMD Processor: hardware that executes a whole thread 

block (32 elements executed per thread at a time) 

 Blocks are organized into a grid 
 Blocks are executed independently and in any order 

 Different blocks cannot communicate directly but can coordinate using 

atomic memory operations in Global Memory 

 Thread management handled by  GPU hardware not by 

applications or OS 
 A multiprocessor composed of multithreaded SIMD processors 

 A Thread Block Scheduler 
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NVIDIA GPU architecture 

 Similarities to vector machines: 

 Works well with data-level parallel problems 

 Scatter-gather transfers 

 Mask registers 

 Large register files 

 

 Differences: 

 No scalar processor 

 Uses multithreading to hide memory latency 

 Has many functional units, as opposed to a few deeply pipelined 

units like a vector processor 
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Example: multiply two vectors of length 8192 

 Grid  Code that works over all elements  

 Thread block analogous to a strip-mined vector loop with 

vector length of 32. Breaks down the vector into  

manageable set of vector elements 

32 elements/thread x 16 SIMD threads/block  512 elements/block   

SIMD instruction executes 32 elements at a time 

Grid size = 8192vector elements / 512 elements/block = 16 blocks 

 

 Thread block scheduler   assigns a thread block  to a 

multithreaded SIMD processor  

 Current-generation GPUs (Fermi) have 7-15 multithreaded 

SIMD processors 
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Threads, blocks, and grid example 

Copyright © 2012, Elsevier Inc. All rights reserved. 
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Figure 4.16 Scheduling of threads of SIMD instructions. The scheduler selects a 

ready thread of SIMD instructions and issues an instruction synchronously to all the 

SIMD Lanes executing the SIMD thread. Because threads of SIMD instructions are 

independent, the scheduler may select a different SIMD thread each time.  
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NVIDIA GPU memory structures 

• Each SIMD Lane has private section of off-chip DRAM 

– “Private memory”, not shared by any other lanes 

– Contains stack frame, spilling registers, and private variables 

– Recent GPUs cache  in L1 and L2 caches 

• Each multithreaded SIMD processor also has local memory that 

is on-chip 

– Shared by SIMD lanes / threads within a block only 

• The off-chip memory shared by SIMD processors is GPU 

Memory 

– Host can read and write GPU memory 
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Terminology 

 Threads of SIMD instructions 
 Each has its own PC 

 Thread scheduler uses scoreboard to dispatch 

 No data dependencies between threads! 

 Keeps track of up to 48 threads of SIMD instructions 

 Hides memory latency 

 Thread block scheduler  schedules thread blocks 

to SIMD processors 

 Within each SIMD processor: 

 32 SIMD lanes 

 Wide and shallow compared to vector processors 
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Example 

 NVIDIA GPU has 32,768 registers 

 Divided into lanes 

 A SIMD thread has up to: 

 64 vector registers of 32 32-bit elements 

 32 vector registers of 32 64-bit elements 

 Fermi has 16 physical SIMD lanes, each containing 2048 

registers (2048 x 16 = 32,768) 
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Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor with 16 

SIMD lanes. The SIMD Thread Scheduler has, say, 48 independent threads of SIMD 

instructions that it schedules with a table of 48 PCs.  
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NVIDIA  ISA -- PTX 

 PTX  Parallel Thread Execution 

 A PTX instruction describes the operation of a single CUDA thread!! 

 Like x86 instructions  PTX instructions translate to an internal format 

 X86  translation done by hardware at execution time 

 PTX  translation done by software at compile time. 

 The format of a PTX instruction:     opcode.type  d,a,b,c 

 d  destination operand 

 a, b, c  source operands 

 

 

 

 

 

 Use virtual registers 

 NVIDIA act as co-processors.  Similar to I/O units 
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PTX arithmetic instructions 

Copyright © 2012, Elsevier Inc. All rights reserved. 
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PTX logical, memory access, and control flow 
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Parallel Thread Execution (PTX) example 

 

 One CUDA thread, 8192 of these created! 

 

shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29) 

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID 

ld.global.f64RD0, [X+R8] ; RD0 = X[i] 

ld.global.f64RD2, [Y+R8] ; RD2 = Y[i] 

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a) 

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i]) 

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i]) 
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Conditional branching 

 GPU branch hardware uses: 

 Internal masks 

 Branch synchronization stack 

 Entries consist of masks for each SIMD lane 

 i.e. which threads commit their results (all threads execute) 

 Instruction markers to manage when a branch diverges into multiple 

execution paths 

 Push on divergent branch 

 …and when paths converge 

 Act as barriers 

 Pops stack 

 Per-thread-lane 1-bit predicate register, specified by 

programmer 
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Example 

 if (X[i] != 0)  

  X[i] = X[i] – Y[i]; 

 else X[i] = Z[i]; 

 

 ld.global.f64 RD0, [X+R8]  ; RD0 = X[i] 

 setp.neq.s32 P1, RD0, #0  ; P1 is predicate register 1 

 @!P1, bra ELSE1, *Push  ; Push old mask, set new mask bits 

      ; if P1 false, go to ELSE1 

 ld.global.f64 RD2, [Y+R8]  ; RD2 = Y[i] 

 sub.f64 RD0, RD0, RD2  ; Difference in RD0 

 st.global.f64 [X+R8], RD0  ; X[i] = RD0 

 @P1, bra ENDIF1, *Comp  ; complement mask bits 

      ; if P1 true, go to ENDIF1 

ELSE1:  ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i] 

   st.global.f64 [X+R8], RD0 ; X[i] = RD0 

ENDIF1:  <next instruction>, *Pop ; pop to restore old mask 

 

Note: a thread has 64 vector components, each a 32  bit floating point 
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NVIDIA GPU memory structures 

 Each SIMD Lane has private section of off-chip DRAM 

 “Private memory”, not shared by any other lanes 

 Contains stack frame, spilling registers, and private variables 

 Recent GPUs cache  in L1 and L2 caches 

 Each multithreaded SIMD processor also has local 

memory that is on-chip 

 Shared by SIMD lanes / threads within a block only 

 The off-chip memory shared by SIMD processors is GPU 

Memory 

 Host can read and write GPU memory 
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Figure 4.18 GPU Memory structures.  

• GPU Memory  shared by all Grids (vectorized loops),  

• Local Memory  shared by all threads of SIMD instructions within a thread 

block (body of a vectorized loop).  

• Private Memory private to a single CUDA thread.  
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Fermi architecture innovations 

 Each SIMD processor has 

 Two SIMD thread schedulers, two instruction dispatch units 

 Two sets of 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 

load-store units, 4 special function units 

 Thus, two threads of SIMD instructions are scheduled every two 

clock cycles 

 Fast double precision: gen- 78 515 GFLOPs for DAXPY 

 Caches for GPU memory: I/D L1 per SIMD processor and shared L2 

 64-bit addressing and unified address space: C/C++ ptrs 

 Error correcting codes: dependability for long-running apps 

 Faster context switching: hardware support, 10X faster 

 Faster atomic instructions: 5-20X faster than gen- 
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Figure 4.19 Block Diagram of Fermi’s Dual SIMD Thread Scheduler.  

Compare this design to the single SIMD Thread Design in Figure 4.16.  
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Fermi multithreaded SIMD processor 
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Loop-level parallelism 

 Focuses on determining whether data accesses in later 

iterations are dependent on data values produced in earlier 

iterations 

 Loop-carried dependence 

 

 Example 1: 

 for (i=999; i>=0; i=i-1) 

  x[i] = x[i] + s; 

 

    No loop-carried dependence 
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Loop-level parallelism example 2 

  

    for (i=0; i<100; i=i+1) { 

  A[i+1] = A[i] + C[i]; /* S1 */ 

  B[i+1] = B[i] + A[i+1]; /* S2 */ 

 } 

  

 S1 and S2 use values computed by S1 in previous iteration 

 S2 uses value computed by S1 in same iteration 

 

D
e
te

c
tin

g
 a

n
d
 E

n
h
a
n
c
in

g
 L

o
o
p

-L
e
v
e
l P

a
ra

lle
lis

m
 



64 Copyright © 2012, Elsevier Inc. All rights reserved. 

Loop-level parallelism example 3 

 for (i=0; i<100; i=i+1) { 

  A[i] = A[i] + B[i]; /* S1 */ 

  B[i+1] = C[i] + D[i]; /* S2 */ 

 } 

 

     S1 uses value computed by S2 in previous iteration but dependence 

     is not circular so loop is parallel. Transform to: 

 

 A[0] = A[0] + B[0]; 

 for (i=0; i<99; i=i+1) { 

  B[i+1] = C[i] + D[i]; 

  A[i+1] = A[i+1] + B[i+1]; 

 } 

 B[100] = C[99] + D[99]; 
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Loop-level parallelism examples 4 and 5 

 for (i=0;i<100;i=i+1)  { 

  A[i] = B[i] + C[i]; 

  D[i] = A[i] * E[i]; 

 } 

 No loop-carried dependence 

 

 

 for (i=1;i<100;i=i+1)  { 

  Y[i] = Y[i-1] + Y[i]; 

 } 

 Loop-carried dependence in the form of recurrence 
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Finding dependencies 

 Assume that a 1-D array index i is affine: 

 a x i + b (with constants a and b) 

 An n-D array index is affine if it is affine in each dimension 

 Assume: 

 Store to a x i + b, then 

 Load from c x i + d 

 i runs from m to n 

 Dependence exists if: 

 Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n 

 Store to a x j + b, load from a x k + d, and a x j + b = c x k + d 
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Finding dependencies 

 Generally cannot determine at compile time 

 Test for absence of a dependence: 

 GCD test: 

 If a dependency exists, GCD(c,a) must evenly divide (d-b) 

 

 Example: 

for (i=0; i<100; i=i+1) { 

 X[2*i+3] = X[2*i] * 5.0; 

} 

 Answer: a=2, b=3, c=2, d=0 GCD(c,a)=2, d-b=-3  no 

dependence possible. 
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Finding dependencies example 2 

for (i=0; i<100; i=i+1) { 

 Y[i] = X[i] / c; /* S1 */ 

 X[i] = X[i] + c; /* S2 */ 

 Z[i] = Y[i] + c; /* S3 */ 

 Y[i] = c - Y[i]; /* S4 */ 

} 

 

 Watch for antidependencies and output 

dependencies: 
 RAW: S1S3, S1S4 on Y[i], not loop-carried 

 WAR: S1S2 on X[i]; S3S4 on Y[i] 

 WAW: S1S4 on Y[i] 
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Reductions 

 Reduction Operation: 

 for (i=9999; i>=0; i=i-1) 

  sum = sum + x[i] * y[i]; 

 

 Transform to… 

 for (i=9999; i>=0; i=i-1) 

  sum [i] = x[i] * y[i]; 

 for (i=9999; i>=0; i=i-1) 

  finalsum = finalsum + sum[i]; 

 

 Do on p processors: 

 for (i=999; i>=0; i=i-1) 

  finalsum[p] = finalsum[p] + sum[i+1000*p]; 

 Note:  assumes associativity! 
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Fallacies 

1. GPUs suffer from being co-processors. 

The I/O device nature of GPUs creates a level of indirection between 

the compiler and the hardware and gives more flexibility to GPU 

architects who can try new innovations and drop them if not successful. 

For example, the Fermi architecture changed the hardware instruction 

set  without disturbing the NVIDIA software stack:  

(1) from memory-oriented as x86 to register-oriented like MIPS;  

(2) from 32-bit to 64-bit addressing 

2. One can get good performance without providing good 

memory bandwidth. 

3. Add more threads to improve performance. 

If memory accesses of CUDA threads are scattered or not correlated  

the memory system will get progressively slower. The CUDA threads 

must enjoy locality of memory access.   

Copyright © 2012, Elsevier Inc. All rights reserved. 


