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Introduction

uoNoONpPOAU|

= Pipelining become universal technigue in 1985
= Overlaps execution of instructions
= Exploits “Instruction Level Parallelism (ILP)”

= TWO main approaches:

= Dynamic - hardware-based
« Used in server and desktop processors

= Not used as extensively in Parallel Multiprogrammed
Microprocessors (PMP)

= Static approaches - compiler-based
= Not as successful outside of scientific applications




Review of basic concepts

m Pipelining = each instruction is split up into a sequence of
steps — different steps can be executed concurrently by

different circuitry.

= A basic pipeline in a RISC processor

s |F — Instruction Fetch
= |ID — Instruction Decode
s EX — Instruction Execution

= MEM — Memory Access
= WB — Register Write Back
= Two techniques:
= Superscalar - A superscalar processor executes more than one
iInstruction during a clock cycle.

= VLIW - very long instruction word — compiler packs multiple
independent operations into an instruction




Basic superscalar 5-stage pipeline

Superscalar-> a processor executes more than one instruction during a
clock cycle by simultaneously dispatching multiple instructions to
redundant functional units on the processor.

The hardware determines (statically/ dynamically) which one of a block on
n instructions will be executed next.
1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

1i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB

1+4 IF ID EX MEM WB

1i+5 IF ID EX MEM WB

1+6 IF ID EX MEM WB

i+7 IF D EX MEM WB

1+8 IF ID EX MEM WB
149 IF ID EX MEM WB

A single-core superscalar processor - SISD
A multi-core superscalar > MIMD.




ﬂazards% pipelining could lead to incorrect results.

=] Data dependence “true dependence’> Read after Write hazard (RAW)
I subR1,R2,R3 %subd,s,¢t =>d=s-t
i+1: add R4,R1,R3 % addd,st =>d=s+t
Instruction (i+1) reads operand (R1) before instruction (i) writes it.
=  Name dependence “anti dependence” - two instructions use the same
register or memory location, but there is no data dependency between them.
= Write after Read hazard (WAR) = Example:
I.  sub R4, R5, R3
I+1: add R5, R2, R3
I+2: mul R6, R5, R7
Instruction (i+1) writes operand (R5) before instruction (i) reads it.
= Write after Write (WAW) (Output dependence) - Example

I.  sub R6, R5, R3
i+1: add R6, R2, R3
i+2: mul R1, R2, R7
Instruction (i+1) writes operand (R6) before instruction (i) writes it.




More about hazards

Data hazards = RAW, WAR, WAW.

Structural hazard =» occurs when a part of the processor's hardware is
needed by two or more instructions at the same time. Example: a single
memory unit that is accessed both in the fetch stage where an instruction
IS retrieved from memory, and the memory stage where data is written
and/or read from memory. They can often be resolved by separating the
component into orthogonal units (such as separate caches) or bubbling
the pipeline.

Control hazard (branch hazard) =» are due to branches. On many
Instruction pipeline microarchitectures, the processor will not know the
outcome of the branch when it needs to insert a new instruction into the
pipeline (normally the fetch stage).




Instruction-level parallelism (ILP)
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= When exploiting instruction-level parallelism, goal is to
maximize CPI
= Pipeline CPI =
= ldeal pipeline CPI +
= Structural stalls +
« Data hazard stalls +
= Control stalls

= Parallelism with basic block is limited
= Typical size of basic block = 3-6 instructions
= Must optimize across branches




Data dependence
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= Loop-Level Parallelism
= Unroll loop statically or dynamically
= Use SIMD (vector processors and GPUs)

= Challenges:

= Data dependency

= Instruction | is data dependent on instruction i if
= |nstruction i produces a result that may be used by instruction |

= Instruction j is data dependent on instruction k and instruction k
IS data dependent on instruction i

= Dependent instructions cannot be executed
simultaneously




Data dependence

s Dependencies are a property of programs

= Pipeline organization determines if dependence
IS detected and If it is s causes a “stall.”

= Data dependence conveys:
= Possibility of a hazard
= Order in which results must be calculated

= Upper bound on exploitable instruction level
parallelism

= Dependencies that flow through memory
locations are difficult to detect
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Name dependence

s WO Instructions use the same name but no flow
of iInformation
= Not a true data dependence, but is a problem when
reordering instructions

= Antidependence: instruction j writes a register or
memory location that instruction i reads
= Initial ordering (i before j) must be preserved
= Output dependence: Instruction i and instruction |
write the same register or memory location
= Ordering must be preserved

= T0 resolve, use renaming techniques
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Control dependence
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m Every instruction is control dependent on some set of
branches and, in general, the control dependencies must be
preserved to ensure program correctness.

= Instruction control dependent on a branch cannot be moved before
the branch so that its execution is no longer controller by the branch.

= An instruction not control dependent on a branch cannot be moved
after the branch so that its execution is controlled by the branch.

= Example
if C1 {
S,
¥
if C2 {
S2;
¥

S1 is control dependent on C1; S2 is control dependent on C2 but not on C1




Properties essential to program correctness

Preserving exception behavior - any change in instruction order must not
change the order in which exceptions are raised. Example:

DADDU R1,R2, R3
BEQZ R1,L1
L1 LW R4, O(R1)

Can we move LW before BEQZ ?
Preserving data flow - the flow of data between instructions that produce

results and consumes them. Example:
DADDU R1, R2,R3

BEQZ R4,L1
DSUBU R1, RS, R9
L1 LW R5, 0(R2)
OR R7,R1, R8
Does OR depend on DADDU and DSUBU?




Examples
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Example 1: = OR Instruction dependent
DADDU R1,R2,R3 on DADDU and DSUBU
BEQZ R4,L

DSUBU R1,R1,R6

OR R7,R1,R8

Example 2: s Assume R4 isn’'t used after
DADDU R1,R2,R3 skip
BEQZ R12,skip = Possible to move DSUBU

DSUBU R4,R5,R6

DADDU R5,R4,R9
skip:

OR R7,R8,R9

before the branch




Compiler techniques for exposing ILP

= Loop transformation technigue to optimize a program's execution speed:

1. reduce or eliminate instructions that control the loop, e.g., pointer
arithmetic and "end of loop" tests on each iteration

2. hide latencies, e.g., the delay in reading data from memory

3. re-write loops as a repeated sequence of similar independent
statements - space-time tradeoff

2. reduce branch penalties;
= Methods

1. pipeline scheduling
2. loop unrolling

3. Strip mining

2. branch prediction




1. Pipeline scheduling

= Pipeline stall = delay in execution of an instruction in an instruction
pipeline in order to resolve a hazard. The compiler can reorder
Instructions to reduce the number of pipeline stalls.

= Pipeline scheduling =» Separate dependent instruction from the
source instruction by the pipeline latency of the source instruction
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= Example:
for (i=999; i>=0; i=i-1)
x[i] = X[i] + s:
Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

Load double Store double (0




Pipeline stalls

Assumptions:
. S>F2
2. The element of the array with the highest address 2> R1
s The element of the array with the lowest address +8 2> R2
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Loop: L.D FO,0(R1) % load array element in FO

stall % next instruction needs the result in FO
ADD.D F4,FO,F2 % increment array element
stall
stall % next instruction needs the result in F4
SD F4,0(R1) % store array element
DADDUI R1,R1,#8 % decrement pointer to array element
stall (assume integer load latency is 1) % next instruction needs result in R1
BNE R1,R2,Loop % loop if not the last element

Instruction producing result Instruction using result Latency in clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op |

Load double Store double 0




Pipeline scheduling

Scheduled code:

Loop: L.D FO,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,FO,F2
stall
stall
SDF 4,8(R1)
BNE R1,R2,Loop
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Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

Load double Store double 0




2. Loop unrolling

» Given the same code

Loop: L.D FO,0(R1)
DADDUI R1,R1,#-8
ADD.D  F4,FO,F2
S.D F4,8(R1)
BNE R1,R2,Loop

= Assume # elements of the array with starting address in R1 is
divisible by 4

= Unroll by a factor of 4
= Eliminate unnecessary instructions.




0O
Unrolled loop :
j=
Loop: L.D FO,0(R1) cﬂ
ADD.D  F4,FO,F2 1
S.D F4,0(R1) % drop DADDUI & BNE =]
L.D F6,-8(R1) =
ADD.D  F8,F6,F2 &
S.D F8,-8(R1) %drop DADDUI & BNE
L.D F10,-16(R1)
ADD.D  F12,F10,F2
S.D F12,-16(R1) % drop DADDUI & BNE
L.D F14,-24(R1)
ADD.D  F16,F14,F2
S.D F16,-24(R1)
DADDUI R1,R1,#-32
BNE R1,R2,Loop

» Live registers: FO-1, F2-3, F4-5, F6-7, F8-9,F10-11, F12-13, F14-15,
and F16-15; also R1 and R2

= [nthe original code: only FO-1, F2-3, and F4-5; also R1 and R2




Pipeline schedule the unrolled loop

Loop:

L.D
L.D
L.D
L.D
ADD.D
ADD.D
ADD.D
ADD.D
S.D
S.D
DADDUI
S.D
S.D
BNE

FO,0(R1)
F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F4,FO,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
F4,0(R1)
F8,-8(R1)
R1,R1,#-32
F12,16(R1)
F16,8(R1)
R1,R2,Loop

Pipeline scheduling reduces
the number of stalls.

1. The L.D instruction
requires only one cycle so
when ADD.D are issued F4,
F8, F12 , and F16 are already
loaded.

2. The ADD.D requires only
two cycles so that two S.D
can proceed immediately

3. The array pointer is
updated after the first two S.D
so the loop control can
proceed immediately after the
last two S.D
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Loop unrolling & scheduling summary

Use different registers to avoid unnecessary constraints.
Adjust the loop termination and iteration code.

Find if the loop iterations are independent except the loop maintenance
code = if so unroll the loop

Analyze memory addresses to determine if the load and store from
different iterations are independent =»if so interchange load and stores
In the unrolled loop

Schedule the code while ensuring correctness.

Limitations of loop unrolling
s Decrease of the amount of overhead with each roll
s Growth of the code size

= Register pressure (shortage of registers) = scheduling to increase ILP
Increases the number of live values thus, the number of registers




More compiler-based loop transformations

m fission/distribution > break a loop into multiple loops over the same index range but each
taking only a part of the loop's body. Can improve locality of reference, both of the data
being accessed in the loop and the code in the loop's body.

m fusion/combining = when two adjacent loops would iterate the same number of times their
bodies can be combined as long as they make no reference to each other's data.

= interchange/permutation - exchange inner loops with outer loops. When the loop variables
index into an array, such a transformation can improve locality of reference.

= inversion = changes a standard while loop into a do/while (a.k.a. repeat/until) loop wrapped
in an if conditional, reducing the number of jumps by two for cases where the loop is
executed. Doing so duplicates the condition check (increasing the size of the code) but is
more efficient because jumps usually cause a pipeline stall.

m reversal = reverses the order in which values are assigned to the index variable. This is a
subtle optimization which can help eliminate dependencies and thus enable other
optimizations.

m scheduling = divide a loop into multiple parts that may be run concurrently on multiple
processors.

= skewing - take a nested loop iterating over a multidimensional array, where each iteration
of the inner loop depends on previous iterations, and rearranges its array accesses so that
the only dependencies are between iterations of the outer loop.




3. Strip mining

s The block size of the outer block loops is determined by
some characteristic of the target machine, such as the
vector register length or the cache memory size.

= Number of iterations = n
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= Goal: make k copies of the loop body

= Generate pair of loops:
» First executes n mod k times
= Second executes n/ k times
» “Strip mining”




B—=0

4. Branch prediction

Branch prediction = guess whether a conditional jump will be taken or not.
Goal - improve the flow in the instruction pipeline.

Speculative execution - the branch that is guessed to be the most likely
Is then fetched and speculatively executed.

Penalty - if it Is later detected that the guess was wrong then the
speculatively executed or partially executed instructions are discarded and
the pipeline starts over with the correct branch, incurring a delay.

How? - the branch predictor keeps records of whether branches are
taken or not taken. When it encounters a conditional jump that has been
seen several times before then it can base the prediction on the history.
The branch predictor may, for example, recognize that the conditional
jump is taken more often than not, or that it is taken every second time

Note: not to be confused with branch target prediction - guess the target of a
taken conditional or unconditional jump before it is computed by decoding and
executing the instruction itself. Both are often combined into the same circuitry.




Predictors

= Basic 2-bit predictor:

s For each branch:
= Predict taken or not taken
= If the prediction is wrong two consecutive times, change prediction

= Correlating predictor:
= Multiple 2-bit predictors for each branch
= One for each possible combination of outcomes of preceding n
branches
= Local predictor:

= Multiple 2-bit predictors for each branch

= One for each possible combination of outcomes for the last n
occurrences of this branch
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= Tournament predictor:
= Combine correlating predictor with local predictor




Branch prediction performance
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Local 2-bit predictors
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B A+ L
5%

L - - |
Correlating predictors

A
Tournament predictors

Conditional branch misprediction rate

0% |

I I I
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 51
Total predictor size




Dynamic scheduling

= Rearrange order of instructions to reduce stalls
while maintaining data flow
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= Advantages:

= Compiler doesn’t need to have knowledge of
microarchitecture

= Handles cases where dependencies are unknown at
compile time

s Disadvantage:
s Substantial increase in hardware complexity
= Complicates exceptions




Dynamic scheduling

= Dynamic scheduling implies:
= Out-of-order execution
= Out-of-order completion

= Creates the possibility for WAR and WAW
hazards

= Tomasulo’s Approach
= Tracks when operands are available

= Introduces register renaming in hardware
= Minimizes WAW and WAR hazards

uonaipaid youeliyg



Register renaming
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= Example:
DIV.D FO,F2,F4
ADD.D F6,FO,F8 ’ ; WAR -
S.D F6,0(R1) antidependence -
SUB.D F8,F10,F14 antidependence WAW — F6

MUL.D F6,F10,F8
+ name dependence with F6




Register renaming

s Example: add two temporary registers Sand T
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I DIV.D FO,F2,F4

+1: ADD.D S,FO,FS8 (instead of ADD.D F6,FO,F8)
+2 S.D S,0(R1) (instead of S.D F6,0(R1)
+3 SUB.D T,F10,F14 (instead of SUB.D F8,F10,F14)
+4  MUL.D F6,F10,T (instead of MUL.D F6,F10,F8)

= Now only RAW hazards remain, which can be strictly
ordered




Register renaming

= Register renaming is provided by reservation stations (RS)

= Contains:
= The instruction
» Buffered operand values (when available)

= Reservation station number of instruction providing the operand
values
= RS fetches and buffers an operand as soon as it becomes available
(not necessarily involving register file)
= Pending instructions designate the RS to which they will send their

output
= Result values broadcast on a result bus, called the common data bus (CDB)

= Only the last output updates the register file

= As instructions are issued, the register specifiers are renamed with
the reservation station

= May be more reservation stations than registers
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Tomasulo’s algorithm

= Goal - high performance without special compilers when
the hardware has only a small number of floating point
(FP) registers.

= Designed in 1966 for IBM 360/91 with only 4 FP registers.

= Used in modern processors: Pentium 2/3/4, Power PC 604,
Neehalem.....
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s Additional hardware needed

s Load and store buffers = contain data and addresses, act like
reservation station.

= Reservation stations - feed data to floating point arithmetic units.




IBM360/91

CPU cycle time: 60 nanoseconds
memory cycle time (to fetch and store
eight bytes in parallel): 780ns
Standard memory capacity: 2,097,152B
interleaved 16 ways (magnetic cores)
Up to 6,291,496 bytes of main storage
Up to 16.6-million additions/second
Ca.120K gates, ECL

Solid Logic Technology
(SLT), an IBM invention |
which encapsulated 5-6
transistors into a small
module--a transition

technology between dis_ . = .
transistors and the IC
About 12 were made

See: :

Some Reflections on Computer Engineering:
30 Years after the IBM System 360
Model 91

Michael J. Flynn

ftp://arith.stanford.edu/tr/micro30.ps.Z

Source: U §
http://www.columbia.edu/acis/history i ¥ \

/36091 .html NASA's Space Flig'l' Cenfe in Greenbelt, Md, January 1968
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From instruction unit

|

Instruction FP registers J{
queue
Load/store
operations
Y Floating-point Operand
Address unit operations buses
Store buffers

* f ¥ Load buffers

Operation bus

R I

Memaory unit

3 2
2 Feservation 1
1 stations

Cata Address .

Common data bus (CDE)




Instruction execution steps

m Issue
= Get next instruction from FIFO queue
« If available RS, issue the instruction to the RS with operand values if
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available
= If operand values not available, stall the instruction
m Execute
= When operand becomes available, store it in any reservation stations
waiting for it

= When all operands are ready, issue the instruction

= Loads and store maintained in program order through effective
address

= No instruction allowed to initiate execution until all branches that
proceed it in program order have completed

s Write result

s Broadcast result on CDB into reservation stations and store buffers
= (Stores must wait until address and value are received)




Example

Instruction status
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Instruction Issue Execute Write Result
L.D F6,32(R2) A A A
L.D F2,44(R3) A N
MUL.D  FO,F2,F4 ¥
SUB.D  F8,F2,F6 Y
DIV.D  F10,F0,F6 y
ADD.D  F6,F8,F2 Y

Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl No
Load2 Yes Load 44 + Regs[R3]
Addl Yes SUB Mem[32 + Regs[R2]] Load2
Add2 Yes ADD Addl Load2
Add3 No
Mult1 Yes MUL Regs[F4] Load?2
Mult2 Yes DIV Mem[32 + Regs[R2]] Multl

Register status

Field FO F2 F4 Fe F8 F10 F12 ... F30
Qi Mult1 Load2 Add2 Addl Mult2

MK
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Notations

Op—~Operation to perform in the unit (e.g., + or =)

Qj, Ok—Reservation stations producing source
registers (value to be written)

V], Vk—Value of Source operands
RJ], Rk—Flags indicating when Vj, VK are ready
Busy—Indicates reservation station and FU is busy

Register result status—Indicates which functional
unit will write each register, if one exists. Blank
when no pending instructions that will write that
register.




Example of Tomasulo algorithm

Exec Write

nstruction startis.
Instruction ¥i k

Issue Comp Result

Busy Address

LD F6 34+ R2 Loadl | No
LD F2 45+ RS3 Load2 | No
MULTD FO T2 T4 Load3 | No
SUBD F8 F6 F2 \
DIVD Fl10 FoO F6
ADDD  F6  Fs B2 3 Load/Buffers
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vi Vic Oj Ok
Addl | No
FU count Add2 | No 3 FP Adder R.S
down Adds | No ' 2 FP Mult R.S
Multl | No S
Mult2 | No
Register result status:
Clock FO F2 F4 Fo F8 Fl10 FI2 F30
/0 FU | |
Clock cycle
counter

s 3 - |oad buffers (Loadl, Load 2, Load 3)

= 5 -reservation stations (Add1l, Add2, Add3, Mult 1, Mult 2).

= 16 pairs of floating point registers FO-F1, F2-F3,.....F30-31.

= Clock cycles: addition = 2; multiplication = 10; division =240;




Clock cycle 1

Instruction starus: Exec Write
Instruction J k S5 Comp Result Address
LD F6 34+ R2 Load: ||
LD F2 45+ R3 Load2
MULTD FO F2 F4 Load3
SUBD F8 F6 F2
DIVD F10 FoO F6
ADDD F6 F8 F2
Reservation Stations: S7 S2 RS RS
Time Name Busy Op Vi Vi Oy Ok
Addl | No
Add2 | No
Add3 | No
Multl | No
Mult2 | No

Register result status:

Clock FOo F2 F4 6. FS8 FIO Fl2 ... F30
1 | '

= A load from memory location 34+(R2) is issued; data will be stored
later in the first load buffer (Loadl)




Clock cycle 2

Instruction status: Exec Write
Instruction J k Issue Comp Result Busy Address
LD F6 34+ R2 ' Loadl | Yes 34+R2
LD F2 45+ R3 Loadf[ Tes 1o ]
MULTD FO F2  F4 Load3
SUBD F8 F6  F2
DIVD F10 FO  F6
ADDD  F6 F8  F2

Reservation Stations: S S2 RS RS
Time Name Busy Op V7 Vk o7 Ok

Addl No

Add2 No

Add3 No

Multl | No

Mult2 | No

Register result status:

Clock FO F4 Fo FS FIO FlI2 ... F30
2 FU | Loadl |

= The Second load from memory loaction 45+(R3) is issued; data will be
stored in load buffer 2 (Load?2).

=  Multiple loads can be outstanding.




Clock cycle 3

Instruction status: Exec Write
Instruction J ko Issue @ddazz Result Busy Address
LD F6 34+ R2 1 Loadl | Yes  34+R2
LD F2 45+ R3 2 Load2 | Yes  45+R3
MULTD FO F2 F4 3 Load3 | No
SUBD FS8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2
Reservation Stations: S17 S2 RS RS
Time Name Busy Op Vi Vi Qj Ok
Addl

Add2
Add3s
Mult:

Register result status:

Clock o F2 F4 Fo FS8 FIO FliI2 ... F30
3 FU Load?2 Loadl |

= First load completed - SUBD instruction is waiting for the data.
= MULTD - issued
m Register names are removed/renamed in Reservation Stations




Clock cycle 4

Instruction status. Exec Write
Instruction J ko Issue Comp Fiesdddl Busy Address
LD Fo6 34+ R2 1 TLoadl No
LD F2 45+ R3 2 TLoad2 | Yes 45+R3
MULTD FO F2 F4 TL.oad3 No
SUBD F8 Fo F2
DIVD F10 FO Fo6
ADDD Fo6 EF8 F2

Reservation Stations: S17 S2 RS RS
Time Name i i

Addil

Add2

Yes SUBD M(AL)
No

Add3 | No
Multl | Yes MULTD R(F4) Load2
Mult2 | No
Register result status:
Clock FoO 2 F4 Foe F§8 FI0 FliI2 . F30
4 FU | Multl TIoad? M(A1) Addl |

s Load2 is completed; MULTD waits for the results of it.
= The results of Load 1 are available for the SUBD instruction.




Clock cycle 5

Instruction status: Exec Write
Instruction J ik Issue Comp Result Busy Address
LD Fo6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 Load3 No
SUBD FS8 Fo F2 4
DIVD F10 FO Fé6 5
ADDD Fo6 E8 F2

Reservation Stations. S17 S2 RS RS
ame Busy Op Vy - Oy Ok
2JAddl | Yes SUBD M(A1

Add2 | No

Add3 | No

10fMultl | Yes MULTTIM(A2) |R(F4)

Mult2 | Yes DIVD M(A1) Multl

Register result status:

Clock FoO F2 F4 Fo FS FI0 Fli12 ... F30
5 FU | Multl M(A2) M(AL) Addl Muli? |

= The result of Load2 available for MULTD executed by Multl and SUBD
executed by Addl. Both can now proceed as they have both operands.

s Mult2 executes DIVD and cannot proceed yet as it waits for the results of
Addl.




Clock cycle 6

Instruction status: Exec Write
Instruction J k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4
DIVD F10 Fo F6
ADDD F6 F8 F2
Reservation Stations: S7 S2 RS RS
Time Name Busy Op V7 Vi Oy Ok
1 Addl o LR

N A N A
Addzf| vyes ADDD M(A2) Addl |
Add3 | No
9 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1l) Multl
Register result status:
Clock Fo F2 F4 Fo F8 FI0 FlI2 ... F30
6 FU | Multl M(A2) Add2 Addl Muli2 |

s Issue ADDD

MI<
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Clock cycle 7

Instruction status: Exec Write
Instruction J k Issue Comp Result Busy Address
LD Fo6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO E2 F4 3 Load3 No
SUBD FS8 Fo F2 4
DIVD F10 FO Fo 5
ADDD Fo6 ES F2 (&)
Reservation Stations: S17 S2 RS RS
Time Name Busy Op Vi Vi % Ok
0 Addl | Yes SUBD M(ALl) M(A2)
Add2 | Yes ADDD M(A2) Addl
Add3 No
8 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(AL1) Multl

Register result status:

Clock FO F2 F4 Fe FS FI10 Fl12 ... F30
7 FU | Multl M(A2) Add2 Addl Mult2 |

= The results of the SUBD produced by Add1 will be available in the next
cycle.

= ADDD instruction executed by Add2 waits for them.




Clock cycle 8

Instruction starus: Exec Write
Instruction J k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO EF2 F4 3 Load3 No
SUBD F8 Fo6 F2 4 7 8
DIVD F10 FO Fo6 5
ADDD Fo6 FS F2 6
Reservation Stations: S S2 RS RS
Time Name Busy Op Vy Vic Oy Ok
Addl No
2 Add2 | Yes ADDD (Az)
Add3 No
7 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(AL) Multl

Register result status:

Clock FO F2 F4 Fo FS FI0 Fli2 ... F30
8 FU | Multl M(A2) Addz Mult2 |

s The results of SUBD are deposited by the Add1 in F8-F9
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Clock cycle 9

Instruction status: Exec Write
Instruction J k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6
Reservation Stations: S7 S2 RS RS
Time Name Busy Op Vi Vik Qj Ok
Addl | No
1 Add2 | Yes ADDD (M-M) M(A2)
Add3 | No
6 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIV M(A1l) Multl
Register result status:
Clock FO F2 F4 Fe F8 FI0 FlI2
o FU | Multl M(A2) Add2 (M-M) Mult2?
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Clock cycle 10

Instruction status. FExec Write
Instruction J ik Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 Fé6 F2 4 7 8
DIVD F10 FoO F6 5
ADDD F6 F8 F2 6 10
Reservation Stations: S7 S2 RS RS
Time Name Busy Op Vi Vi Qj Ok
Addl | No
0 Add2 | Yes ADDD (M-M) M(A2)
Add3 | No
5 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock FO FrF2 F4 F6 FS FI0 Fl2 F30
10 FU | Multl M(A2) Add2 (M-M) Muli2 |

= ADDD executed by Add2 completes, it needed 2 cycles.
= There are 5 more cycles for MULTD executed by Multl.




Clock cycle 11

Instruction status: Exec Write
Instruction J k Issue Comp Result Busy Address
L.D F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2  F4 3 Load3 | No
SUBD F8 F6  F2 4 7 8
DIVD F10 FO Fé6 5
ADDD  F6 F8  F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vy Vic Oy Ok
Addl | No
Add2 | No
Add3 | No
4 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIV M(A1) Multl
Register result status:
Clock Fo F2 F4 Fo F§ FI0O Fli2 ... F30

11 FU | Multl M(A2) V-M-VEMEMD Ml |

= Only MULTD and DIVD instructions did not complete. DIVD is waiting for
the result of MULTD before moving to the execute stage.




Clock cycle 12

—

Instruction starus: Exec Write
Instruction J k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2  F4 3 Load3 | No
SUBD F8 F6  F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8  F2 6 10 11
Reservation Stations: S7 S2 RS RS
Time Name Busy Op Uy Vi Oy Ok
Addl | No
Add2 | No
Add3 | No
3 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock Fo 2 F4 Fo F8 FI10 FliI2 ... F30
12 FU | Multl M(A2) (M-M+N (M-M) Mult2 |
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Clock cycle 13

Instriction status: Exec Wriite
Instruction J k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD FS8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 FS8 EF2 6 10 11
Reservation Stations: S7 S2 RS RS
Time Name Busy Op Vi Vk Oy Ok
Addl | No
Add2 | No
Add3 | No
2 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M((AL1) Multl
Register result status:
Clock Fo F2 F4 Fo FS FIO Fl12 ... F30
13 FU | Multl M(A2) (M-M+N (M-M) Mult2 |
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Clock cycle 14

Instruction status: Exec Write
Instruction J k  Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4 7 8
DIVD F10 FO Fé6 5
ADDD F6 ES8 F2 6 10 11
Reservation Stations: S17 S2 RS RS
Time Name Busy Op vy Vk Oy Ok
Addl | No
Add2 | No
Add3 | No
1 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD MC(A1) Multl
Register result status:
Clock FO F2 F4 Fo FS FI0O FliI2 ... F30
14 FU | Multl M(A2) (M-M+N (M-M) Mult2 |
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Clock cycle 15

Instruction starus: Fxec Write
Instruction J k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2  F4 3 15 Load3 | No
SUBD F8 F6  F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8  F2 6 10 11
Reservation Stations: S7 S2 RS RS
Time Name Busy Op Vi Vi Oy Ok
Addl | No
Add2 | No
Add3 | No
0 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(AL1) Multl
Register result status:
Clock FO F2 F4 Fo FS8 FIO0 FliI2 ... F30
15 FU | Multl M(A2) (M-M+N (M-M) Mult2 |

= MULTS instruction executed by Multl unit completed execution.
= DIVD in instruction executed by the Mult2 unit is waiting for it.




Clock cycle 16

Instruction startus: Exec Write
Instruction J k  Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO 2 F4 3 15 16 Load3 | No
SUBD FS8 F6 F2 4 7 8
DIVD F10 Fo F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S17 S2 RS RS
Time Name Busy Op Vi Vic Q5 Ok
Addl | No
Add2 | No
Add3 | No
Multl | No
40 Mult2 | Yes DIVD (A1)

Register result status:

Clock F2 F4 Fo F8 FIO FI2 ... F30
16 FU M(A’?) (M-M+N (M-M) Mult2 |
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Clock cycle 55

Instruction status. FExec Write
Instruction J ik Issue Comp Result Busy Address
LD Fo6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 15 16 ILoad3 No
SUBD F8 Fo6 F2 4 7 8
DIVD F10 FO Fo6 5
ADDD Fo6 FS F2 &) 10 11
Reservation Stations: S17 S2 RS RS
Time Name Busy Op I’y Vi Qj Ok
Addl No
Add2 No
Add3 No
Multl | No
1 Mult2 | Yes DIVD M*F4 M((AIL)

Register result status:

Clock Fo F2 F4 Fo F8 FIO FlI2 ... IF30
55 FU | M*F4 M(A2) (M-M+NM (M-M) Mult2 |

= DIVD will finish execution in cycle 56 and the result will be in F6-F7
In cycle 57.

MI<

MORGAN KAUFMANN




Hardware-based speculation

Goal = overcome control dependency by speculating.

Allow Instructions to execute out of order but force them to
commit to avoid: (i) updating the state or (ii) taking an

uonaipaid youeliyg

exception

Instruction commit - allow an instruction to update the
register file when instruction is no longer speculative

Key ideas:

1.

2.

Dynamic branch prediction.

Execute instructions along predicted execution paths, but only
commit the results if prediction was correct.

Dynamic scheduling to deal with different combination of basic
blocks




How speculative execution is done

= Need additional hardware to prevent any irrevocable
action until an instruction commits.
= Reorder buffer (ROB)

= Modify functional units — operand source is ROB rather than
functional units

s Register values and memory values are not written until
an instruction commits

uonaipaid youeliyg

= On misprediction:
= Speculated entries in ROB are cleared
= EXceptions:
= Not recognized until it is ready to commit




Extended floating point unit

= FPusing Tomasulo’s } |
algorithm extended to
handle SpeCUIation. Reorder buffer
- Reorder bUffer now From instruction unit

holds the result of
Instruction between !

completion and | Reg#y  § Data
. ) Instruction ]
commit. Has 4 fields s o regsters
= [nstruction type: i seiiions
branch/store/register operations i
.. . Operand i
= Destination field: TR Floating-poi = s
register number : operations !
= Value field: output J Lo b vl oy
Y
Value _ Operation bus
= Ready field:
completed S R Y ¥ !
execution? i > Reservation =
= Operand source is now  Sore T siatons
p data ¢ v Address -

reorder buffer instead e
Of funCtlonaI unit LW Common data bus (CDB)




Multiple issue and static scheduling

= To achieve CPI < 1=» complete multiple instructions per
clock cycle

= Three flavors of multiple issue processors

1. Statically scheduled superscalar processors

a. Issue a varying number of instructions per clock cycle
b. Use in-order execution

2. VLIW (very long instruction word) processors

a. Issue a fixed number of instructions as one large instruction
b. Instructions are statically scheduled by the compiler

3. Dynamically scheduled superscalar processors

a. Issue a varying number of instructions per clock cycle
b. Use out-of-order execution
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Multiple iIssue processors

Issue Hazard Distinguishing
Common name structure detection  Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mostly in the
(static) embedded space:
MIPS and ARM,
including the ARM
Coretex A8
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic Hardware Dynamic with  Out-of-order execution Intel Core 13, 15.17:
(speculative) speculation with speculation AMD Phenom: IBM
Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in
software and indicated by compiler  signal processing,
(often implicitly) such as the TI C6x
EPIC Primarilystatic Primarily Mostly static ~ All hazards determined [tanium
software and indicated explicitly

by the compiler
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VLIW Processors

s Package multiple operations into one instruction

= Must be enough parallelism in code to fill the available
slots,
= Disadvantages:

= Statically finding parallelism
= Code size

= NoO hazard detection hardware
= Binary code compatibility




Example

= Unroll the loop for X[i]= x[i] +s
to eliminate any stalls. Ignore
delayed branches.

= The code we had before
shown on the right =

= Package in one VLIW
instruction :

= One integer instruction (or
branch)

= Two independent floating-
point operations

= Two independent memory
references.

Loop:

L.D FO,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1)
L.D F14,-24(R1)
ADD.D F4,F0,F2
ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
S.D F4,0(R1)

S.D F8,-8(R1)
DADDUI R1,R1,#-32
S.D F12,16(R1)
S.D F16,8(R1)
BNE R1,R2,Loop
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Example

Memory Memory FP FP Integer
reference 1 reference 2 operation 1 operation 2 operation/branch
L.D FO,0(R1) L.D F6,-8(R1)

L.D F10,-16(R1) L.D F14,-24(R1)
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,FO0,F2 ADD.D F8,F6,F2

L.D F26,-48(R1) ADD.D F12,F10,F2  ADD.D F16,F14,F2
ADD.D F20,F18,F2  ADD.D F24,F22,F2
5.D F4,0(R1) S.D F8,-8(R1) ADD.D F28,F26,F2
$.D F12,-16(R1) S.D F16,-24(R1) DADDUI R1,RI1,#-56
S.D F20,24(R1) S.D F24,16(R1)
S.D F28,8(R1) BNE R1,R2,Loop

Figure 3.16 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes 9
cycles assuming no branch delay; normally the branch delay would also need to be scheduled. The issue rate is 23 oper-
ations in 9 clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of available slots that contained an
operation, is about 60%. To achieve this issue rate requires a larger number of registers than MIPS would normally use in
this loop. The VLIW code sequence above requires at least eight FP registers, while the same code sequence for the base
MIPS processor can use as few as two FP registers or as many as five when unrolled and scheduled.




Dynamic scheduling, multiple issue, speculation

= Modern microarchitectures:
= Dynamic scheduling + multiple issue + speculation

= Two approaches:

= Assign reservation stations and update pipeline control table in
half clock cycles

= Only supports 2 instructions/clock

= Design logic to handle any possible dependencies between the
Instructions

= Hybrid approaches.
= Issue logic can become bottleneck
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Multiple iIssue processor with speculation

= The organization should allow simultaneous execution for all issues in
one clock cycle of one of the following operations:

= FP multiplication
= FP addition

= Integer operations

= Load/Store
s Several datapaths must be widened to support multiple issues.
= The instruction issue logic will be fairly complex.




Multiple iIssue processor with speculation

Reorder buffer
From instruction unit

Y
) Reg # 4 L Data
Instruction 1
queus

Integer and FP registers
Load/store
operations

i _ _ Operand
Address unit Floating-point buses
operations ]
L Load buffers ] ¥

L 3

Operation bus

Store
address

2 Reservation l
1 stations

Store
data 4

Memory unit
lc_:IZtaad Common data bus (CDBE)
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Basic strategy for updating the issue logic

= Assign a reservation station and a reorder buffer for every instruction
that may be issued in the next bundle.

s To pre-allocate reservation stations limit the number of instructions of a
given class that can be issued in a “bundle”

= |l.e. one FP, one integer, one load, one store
= EXxamine all the dependencies among the instructions in the bundle

= |f dependencies exist in bundle, use the assigned ROB number to
update the reservation table for dependent instructions. Otherwise, use
the existing reservations table entries for the issuing instruction.

= Also need multiple completion/commit
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Example

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 increment R2
SD R2,0(R1) ,store result
DADDIU R1,R1,#8 ,increment pointer
BNE R2,R3,LOOP ;branch if not last element
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L] L] L] U
<
Dual iIssue without speculation =
Q
—— 3
Memory o
Issues at  Executesat  access at Write CDB at n
Iteration clock cycle clock cycle  clock cycle clock cycle %
number Instructions number number number number Comment D
Q.
1 LD R2,0(R1) | 2 3 4 First issue c
I DADDIU R2,R2,#1 1 5 6 Wait for LW g
1 sD R2,0(R1) 2 3 7 Wait for DADDIU =
1 pADDIU R1,R1,#8 2 3 4 Execute directly §
1 BNE RZ,R3,L00P 3 7 Wait for DADDIU =
2 LD Rz,0(R1) 4 8 9 10 Wait for BNE %
2 DADDIU RZ,R2,#1 4 11 12 Wait for LW T
2 sD RZ,0(R1) 5 9 13 Wait for DADDIU 8
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE ()
2 BNE RZ,R3,L00P 6 13 Wait for DADDIU Q
3 LD R2,0(R1) 7 14 15 16 Wait for BNE 8_
3 DADDIU RZ,RZ,#1 7 17 18 Wait for LW wm
3 SD R2,0(R1) 8 15 19 Wait for DADDIU -8
3 DADDIU R1,R1,#8 8 14 15 Wait for BNE 8
3 BNE RZ,R3,L00P 9 19 Wait for DADDIU ?_-’._
=
>

= Time of issue, execution, and writing the result for a dual-issue of the pipeline.

= The LD following the BNE (cycles 3, 6) cannot start execution earlier, it must
wait until the branch outcome is determined as there is no speculation




- L ] - <U
>

Dual issue with speculation
jQb)
3.
. (@)
Write v
Issues  Executes Readaccess CDBat Commits O
Iteration atclock  atclock at clock clock atclock g
number Instructions number number number number number Comment Q.
c
1 LD R2,0(R1) 1 2 3 4 5 First issue g
1 DADDIU RZ,RZ2,#1 1 5 G 7 Wait for LW _@
1 sD R2,0(R1) 2 3 7 Wait for DADDIU <
1 DADDIU R1,R1,#8 2 3 4 ) Commit in order %
1 BNE RZ,R3,LO0P 3 7 ) Wait for DADDIU =3
2 LD R2,0(R1) 4 5 6 9 No execute delay 2
2 DADDIU RZ,RZ2,#1 4 8 10 Wait for LW %
c
2 sD R2,0(R1) 5 6 10 Wait for DADDIU __CD
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order Q
-
2 BNE RZ2,R3,LO0P 6 10 11 Wait for DADDIU o
3 LD RZ,0(R1) 7 8 9 10 12 Earliest possible _(é)
3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW g
3 SD RZ,0(R1) 8 9 13 Wait for DADDIU c
3 DADDIU R1,R1,#8 8 9 10 14 Executes earlier Q_‘_J'_
3 BNE R2,R3,L0O0P 9 13 14 Wait for DADDIU 8

= Time of issue, execution, writing the result, and commit.
= The LD following the BNE can start execution early; speculation is supported.
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Advanced techniques for instruction delivery

= Increase instruction fetch bandwidth of a multi-issue processor to
match the average throughput.

= [f an instruction is a branch we will have a zero branch penalty if we
know the next PC.

= Requires
= Wide enough datapaths to IC (Instruction cache)
= Effective branch handling

= Branch target buffer - cache that stores the predicted address for
the next instruction after branch.

m If the PC of a fetched instruction matches the address in this cache
—> the corresponding predicted PC is used as the next PC.
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ranch-target buffer <
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Branch folding

= Optimization:
= Larger branch-target buffer

= Add target instruction into buffer to deal with longer
decoding time required by larger buffer

=« ‘Branch folding”
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Return address predictor

s  Most unconditional branches come from function returns
= The same procedure can be called from multiple sites

= Causes the buffer to potentially forget about the return address
from previous calls

= Create return address buffer organized as a stack
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Integrated instruction fetch unit

= Design monolithic unit that performs:
= Branch prediction
= Instruction prefetch
« Fetch ahead
= Instruction memory access and buffering

= Deal with crossing cache lines
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Register renaming vs. reorder buffers

= Instead of virtual registers from reservation stations and reorder
buffer, create a single register pool

= Contains visible registers and virtual registers
= Use hardware-based map to rename registers during issue
= WAW and WAR hazards are avoided
= Speculation recovery occurs by copying during commit
= Still need a ROB-like queue to update table in order
= Simplifies commit:

= Record that mapping between architectural register and physical
register is no longer speculative

= Free up physical register used to hold older value
= In other words: SWAP physical registers on commit

= Physical register de-allocation is more difficult
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Integrated issue and renaming

= Combining instruction issue with register renaming:

= Issue logic pre-reserves enough physical registers for the
bundle (fixed number?)

= Issue logic finds dependencies within bundle, maps registers
as necessary

= Issue logic finds dependencies between current bundle and
already in-flight bundles, maps registers as necessary
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How much to speculate?

= How much to speculate

= Mis-speculation degrades performance and power
relative to no speculation
= May cause additional misses (cache, TLB)

= Prevent speculative code from causing higher
costing misses (e.g. L2)

= Speculating through multiple branches
= Complicates speculation recovery

= No processor can resolve multiple branches per
cycle
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Energy efficiency

= Speculation and energy efficiency

= Note: speculation is only energy efficient when it significantly
Improves performance

= Value prediction
n Uses:
= Loads that load from a constant pool
= Instruction that produces a value from a small set of values
= Not been incorporated into modern processors

= Similar idea--address aliasing prediction--is used on some
Processors
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Multithreading

= Distinction between TLP (Thread-level parallelism) and multithreading:
= A multiprocessor - multiple independent threads run concurrently.
= A uniprocessor system -=> only one thread can be active at one time
=  Multithreading = improve throughput in uniprocessor systems:
= Shares most of the processor core among the set of threads
= Duplicates only registers, program counter.
= Separate page tables for each thread.




Hardware approaches to multithreading

1. Fine-grain multithreading - interleaves execution of multiple threads,
switches between threads in each clock cycle, round-robin.

= Increase in throughput, but slows down execution of each thread.
" Examples Sun Niagra, Nvidia GPU

2. Coarse grain multithreading - switches only on costly stalls e.qg., level 2
or 3 cache misses

= High pipeline start-up costs
= NoO processors
3. Simultaneous multithreading (SMT) - fine-grain multithreading on
multiple-issue, dynamically scheduled processor.
=  Most common




Execution slots ——»

Superscalar Coarse MT Fine MT

<+— Time

Figure 3.28 How four different approaches use the functional unit execution slots of a superscalar processor.
The horizontal dimension represents the instruction execution capability in each clo¢k cycle. The vertical dimension
represents a sequence of clock cycles. An empty (white) box indicates that the corresponding execution slot is
unused in that clock cycle. The shades of gray and black correspond to four different threads in the multithreading
processors. Black is also used to indicate the occupied issue slots in the case of the superscalar without multithread-
ing support. The Sun T1 and T2 (aka Niagara) processors are fine-grained multithreaded processors, while the Intel
Core i7 and IBM Power7 processors use SMT. The T2 has eight threads, the Power7 has four, and the Intel i7 has two.
In all existing SMTs, instructions issue from only one thread at a time. The difference in SMT is that the subsequent
decision to execute an instruction is decoupled and could execute the operations coming from several different

instructions in the same clock cycle.
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ARM Cortex A8

= Dual-issue, statically scheduled superscalar; dynamic issue detection.
= Two instructions per clock cycle, CPI=0.5.

s Used as basis Apple A9 used in iPad, Intel Core i7 and processors used
In smartphones.




DO D1 D2 D3 D4
Instruction decode
_.’.
Early  L—» Dec/seq —& —» >
Dec —p
Dec queue Score+board RegFile
read/write : : ID remap
issue logic
Early
Dec —p Dec P —P —p —p

Figure 3.37 The five-stage instruction decode of the A8. In the first stage, a PC produced by the fetch unit (either from the
branch target buffer or the PC incrementer) is used to retrieve an 8-byte block from the cache. Up to two instructions are
decoded and placed into the decode queue; if neither instruction is a branch, the PC is incremented for the next fetch. Once in
the decode queue, the scoreboard logic decides when the instructions can issue. In the issue, the register operands are read,;
recall that in a simple scoreboard, the operands always come from the registers. The register operands and opcode are sent to

the instruction execution portion of the pipeline.
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EO E1 E2 E3 E4 ES

Instruction execute
Integer register write back

|
l ALU BP
| Shft B + [ Sat > » WB
flags update ALU
= multiply
5l MUL MUL MUL pipe 0
=) > ACC WB
INST 0 ® K > @ 3 @ i
—_— > Q
C
o
3 ALU BP
INST 1 Q | Shft B + | Sat P > WB ALU pipe 1
7} update
@ flags
c:T)E
o Load/store
» | ALU B LS pipeline » WB oipe 0 or 1

Figure 3.38 The five-stage instruction decode of the A8. Multiply operations are always performed in ALU pipeline 0.
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| [ L2 stalls/instruction
B L1 stalls/instruction
— [ Pipeline stalls/instruction
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gzip vpr crafty parser eon perlbmk gap vortex bzip2

Figure 3.39 The estimated composition of the CPI on the ARM A8 shows that pipeline stalls are the primary addition to the
base CPI. eon deserves some special mention, as it does integer-based graphics calculations (ray tracing) and has very few cache
misses. It is computationally intensive with heavy use of multiples, and the single multiply pipeline becomes a major bottleneck.
This estimate is obtained by using the L1 and L2 miss rates and penalties to compute the L1 and L2 generated stalls per instruction.
These are subtracted from the CP1 measured by a detailed simulator to obtain the pipeline stalls. Pipeline stalls include all three
hazards plus minor effects such as way misprediction.
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2.25

1.751

1.5 1
1.25 I I
i N I 1 1 |

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

A9 performance/A8 performance

0.75

Figure 3.40 The performance ratio for the A9 compared to the A8, both using a 1 GHz clock and the same size caches for L1
and L2, shows that the A9 is about 1.28 times faster. Both runs use a 32 KB primary cache and a 1 MB secondary cache, which is 8-
way set associative for the A8 and 16-way for the A9. The block sizes in the caches are 64 bytes for the A8 and 32 bytes for the A9. As
mentioned in the caption of Figure 3.39, eon makes intensive use of integer multiply, and the combination of dynamic scheduling and a
faster multiply pipeline significantly improves performance on the A9. twolf experiences a small slowdown, likely due to the fact that
its cache behavior is worse with the smaller L1 block size of the A9.
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FO F1 F2 DO D1 D2 D3 D4 EO E1 E2 E3 E4 E5
Branch mispredict

penalty=13 cycles Instruction execute and load/store
|
Instruction = [ ALU/MUL pipe o| BP
S pipe
fetch z b update
= —| 2
— > v
AGU o 1?:2.:” Instruction decode 2 I
e I: queve || | 3 bl ALU pipe 1 e
BTB =l g. p‘
g = . BP
o LS pipe Oor1 update

Figure 3.36 The basic structure of the A8 pipeline is 13 stages. Three cycles are used for instruction fetch and four for
instruction decode, in addition to a five-cycle integer pipeline. This yields a 13-cycle branch misprediction penalty. The
instruction fetch unit tries to keep the 12-entry instruction queue filled.
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Intel 17 pipeline

Figure 3.41 The Intel Core
i7 pipeline structure shown
with the memory system
components.

The total pipeline depth is
14 stages, with branch
mispredictions costing 17
cycles.

There are 48 load and 32
store buffers. The six
independent functional units
can each begin execution of
a ready micro-op in the
same cycle.
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SPECCPU2006 -benchmark

CPU2006 is SPEC's next-generation, industry-standardized, CPU-
Intensive benchmark suite, stressing a system's processor, memory
subsystem and compiler.

Provide a comparative measure of compute-intensive performance
across the widest practical range of hardware using workloads
developed from real user applications.

These benchmarks are provided as source code and require the
user to be comfortable using compiler commands as well as other
commands via a command interpreter using a console or command
prompt window in order to generate executable binaries.




SPECCPU2006 - benchmark

Peralbench ->Pearl; cut-down version of Perl v5.8.7

Mcf = C; vehicle scheduling in public mass transportation. Integer arithmetic.
Gobmk - C; executes a set of commands to analyze Go positions

Hmmr - C; uses a Hidden Markov Model for searching gene databases
Sjeng =C,; plays chess and several chess variants

Libquantum —=>C; library for the simulation of a quantum computer

Omnetpp - C++; discrete event simulation of a large Ethernet network
Astar - C++; derived from a portable 2D path-finding library for game Al

Xalancbmk—-> C++ program; XSLT processor for transforming XML documents
into HTML, text, or other XML document types

Milc - C program for QCD (Quantum Chromodynamics)

Namd - C++; classical molecular dynamics simulation

Dealii >C++; PDE solver using the adaptive finite element method

Soplex = C++; simplex linear program (LP) Solver

Povray - C++; ray tracing in visualization

Lbm - C; computational fluid dynamics using the lattice Boltzmann method
Sphynx3 = C; speech recognition.
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40% -
Figure 3.42 The amount
of “wasted work” is 35% A
plotted by taking the ratio
of dispatched micro-ops
that do not graduate to all
dispatched micro-ops.
For example, the ratio is
25% for sjeng, meaning
that 25% of the
dispatched and executed
micro-ops are thrown
away. 59 -
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igure 3.43 The CPI for

he 19 SPECCPU2006 &
benchmarks shows an
average CPI for 0.83 for 297
both the FP and integer
benchmarks, although the 21
behaviour is quite
different. & 151
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Fallacies

= A Itis easy to predict the performance and the energy efficiency of
two different versions of the same instruction set architecture, if we
hold the technology constant. Case in point Intel i7 920, Intel Atom

230, and ARM A8

Figure 3.45 The relative performance and energy efficiency for a set of single-
threaded benchmarks shows the i7 920 is 4 to over 10 times faster than the Atom 230
but that it is about 2 times less power efficient on average! Performance is shown in
the columns as i7 relative to Atom, which is execution time (i7)/execution time (Atom).
Energy is shown with the line as Energy (Atom)/Energy (i7). The i7 never beats the
Atom in energy efficiency, although it is essentially as good on four benchmarks,
three of which are floating point. Only one core is active on the i7, and the rest are in
deep power saving mode. Turbo Boost is used on the i7, which increases its
performance advantage but slightly decreases its relative energy efficiency.
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Inteli7 920 ARM A8 Intel Atom 230
Four cores, One core, One core,
Area Specific characteristic ~ each with FP no FP with FP
Physical chip Clock rate 2.66 GHz 1 GHz 1.66 GHz
properties —
Thermal design power 130 W 2W 4W
Package - 1366-pin BGA 522-pin BGA 437-pin BGA
Memory system ' Two-level | Two-level
All four-way set All four-way set
associative One-level associative
128 /64 D fully associative 161/16 D
TLB 512L2 321/32D 64 L2
Three-level
32 KB/32 KB Two-level Two-level
256 KB 16/16 or32/32 KB 32/24 KB
Caches 2-8 MB 128 KB-1MB 512 KB
Peak memory BW 17 GB/sec 12 GB/sec 8 GB/sec
Pipeline structure  Peak issue rate 4 ops/clock with fusion 2 ops/clock 2 ops/clock
Pipeline Speculating In-order In-order
scheduling out of order dynamic issue dynamic issue
Two-level
512-entry BTB
4K global history
8-entry return
Branch prediction Two-level stack Two-level

Figure 3.44 An overview of the four-core Intel i7 920, an example of a typical Arm A8 processor chip (with a 256
MB L2, 32K L1s, and no floating point), and the Intel ARM 230 clearly showing the difference in design philoso-
phy between a processor intended for the PMD (in the case of ARM) or netbook space (in the case of Atom) and 2
processor for use in servers and high-end desktops. Remember, the i7 includes four cores, each of which is several
times higher in performance than the one-core A8 or Atom. All these processors are implemented in a comparable’

45 nm technology.
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Fallacies

s B. Processors with lower CPI will always be faster.
s C. Processors with faster clock rate will always be faster.

e

SPECCInt2006  SPECCFP2006

Processor Clock rate base baseline
Intel Pentium 4 670 3.8 GHz - 115 12.2
Inte] Ttanium -2 1.66 GHz 14.5 17.3
Intel i7 3.3 GHz 35.5 384

—————— e ——

Figure 3.46 Three different Intel processors vary widely. Although the Itanium
processor has two cores and the i7 four, only one core is used in the benchmarks.

The product of the CPI and the clock rate determine performance!!




Problem solving

= Consider the following code; the latency of all the
Instructions used by the code snippet are also shown in
Figure 3.48 below

Latencies beyond single cycle
Loop: LD F2,0(RX) Memory LD +4
10:  DIWD  F8,F2,F0 Memory SD +1
1:  MULTD  F2,F6,F2 Integer ADD, SUB +0
12: LD F4,0(Ry) Branches +
13:  ADDD  F4,F0,Fd ADDD 4
14:  ADDD  FI0,F8,F2 MULTD ¥
15:  ADDI _ Rx,Rx,f8 DIVD 2
16:  ADDI _ Ry,Ry,#8 T
17:  sD . F4,0(Ry) '_'d
18: SUB R20, R4, Rx T
19:  BNZ R20, Loop T

S —— E————




Problem 1

[10] <1.8, 3.1, 3.2> What would be the baseline performance (in cycles, per
loop iteration) of the code sequence in Figure 3.48 if no new instruction's
execution could be initiated until the previous instruction’s execution had
completed? Ignore front-end fetch and decode. Assume for now that execution
does not stall for lack of the next instruction, but only one instruction/cycle
can be issued. Assume the branch 1s taken, and that there is a one-cycle branch

delav slot.

= When a branch instruction is involved, the location of the following
delay slot instruction in the pipeline may be called a branch delay
slot. Branch delay slots are found mainly in DSP architectures and
older RISC architectures. MIPS, PA-RISC, ETRAX CRIS, SuperH,
and SPARC are RISC architectures that each have a single branch
delay slot.




P1 - solution

|
Loop: LD F2,0(Rx) 1+4

DIVD F8,F2,F0 1+12 Latencies beyond single cycle

MULTD F2,F6,F2 1+5 Loop: LD F2,0(RX) Memory LD +T

LD F4,0(Ry) 1+4 10 DIVD  F8,F2,F0 Memory SD +

ADDD F4,F0,F4 1+1 I1: MULTD  F2,F6,F2 Integer ADD, SUB +U_.
12: LD F4,0(Ry) Branches -

Ll SRR e 3: ADD  F4,FO,Fd ADDD g

ADDI Rx,Rx,#8 1 14:  ADDD  FL0,F8,F2 MULTD 45

ADDI Ry,Ry,#8 1 15:  ADDI  Rx,Rx,#8 DIVD 2
16:  ADDI  Ry,Ry,#8

SD F4,0(R 1+1 —

»0{Ry) 17: SD . F4,0(Ry) -

SUB R20,R3,Rx 1 18:  SUB RZ0,Rd,Rx B

BNZ R20, Loop 1+1 19:  BNZ R20, Loop

cycles per loop iter 40

Each instruction requires one clock cycle of execution (a clock cycle in
which that instruction, and only that instruction, is occupying the
execution units; since every instruction must execute, the loop will take
at least that many clock cycles). To that base number, we add the extra
latency cycles. Don'’t forget the branch shadow cycle.




Problem 2

[10] <1.8, 3.1, 3.2> Think about what latency numbers really mean—they indi-
cate the number of cycles a given function requires to produce its output, nothing
more. If the overall pipeline stalls for the latency cycles of each functional unit,
then you are at least guaranteed that any pair of back-to-back instructions (a “pro-
ducer” followed by a “consumer™) will execute correctly. But not all instruction
pairs have a producer/consumer relationship. Sometimes two adjacent instruc-
tions have nothing to do with each other. How many cycles would the loop body
in the code sequence in Figure 3.48 require if the pipeline detected true data
dependences and only stalled on those, rather than blindly stalling everything just
because one functional unit is busy? Show the code with <stall= inserted where
necessary to accommodate stated latencies. {Hint: An instruction with latency +2
requires two <stall> cycles to be inserted into the code sequence. Think of it
this way: A one-cycle instruction has latency 1 + 0, meaning zero extra wait
states. So, latency | + | implies one stall cycle; latency 1 + N has N extra stall
cycles.




P2 - solution

Latencies beyond single cycle
Loop: LD F2,0(RX) Memory LD +T
10:  DIVD  F8,F2,F0 Memory SD 4l
I1:  MILTD  F2,F6,F2 Integer ADD, SUB )
2: W F4,0(Ry) Branches N
13:  ADDD  F4,FO,F4 ADDD e
14:  ADDD  FI0,F8,F2 MULTD W
15: AL Rx,Rx,f8 DIVD a2
16:  ADDI  Ry,Ry,#8 -
17: S0 . F4,0(Ry) -
18:  SUB R20,Rd,Rx T
19: BN R20,Loop -

l
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Loop:

LD
<stall=>
<stall=
=<stall=
<stall=
DIVD
MULTD
LD
=stall
=stall
=stall
=stall
ADDD
<stall
=stall
=stall
=stall
<stall
ADDD
ADDI
ADDI

5D

SUB
BNZ
<stall

cycles

(Rx)

due
due
due

due

due
due
due
due

due

Ry ,Ry,#8
F4,0(Ry)
R20,R4,Rx
R20,Loop

branch delay slot=

per loop iter

1+4

e s




Problem 3

[15] <3.6, 3.7> Consider a multiple-issue design. Suppose you have two execu-
tion pipelines, each capable of beginning execution of one instruction per cycle,
and enough fetch/decode bandwidth in the front end so that it will not stall your
execution. Assume results can be immediately forwarded from one execution
unit to another, or to itself, Further assume that the only reason an execution
pipeline would stall is to observe a true data dependency. Now how many cycles

does the loop require?




P 3 _S O | u t I O n Execution pipe 0 Execution pipe 1

Loop: LD F2,0(Rx) ;  <nop=
. <stall for LD latency= 3 <nop=
Latencies beyond single cycle <stall for LD latency> ;  <nop>
Loop: LD F2,0(RX) Memory LD + <stall f D1 . nons
10: DI F8,F2,F0 Memory SO i stall for atency s =nop
1 MLTD  F2,F6,F2 Tnteger ADD, SUB W0 <stall for LD latency= 3 <nop=
I2: W F4,0(Ry) Branches | DIVD F8,F2,F0 ;  MULTD F2,F6,F2
14; ADDD F10,F8,F2 MULTD +5
15 D Rx,Ru,f8 DIV 7] <stall for LD latency> s =nhop=
16:  ADDI  Ry,Ry,#8 <stall for LD latency=> ;  <nop=>
I7: SO . F4,0(Ry) <stall for LD latency=> ;  <nop=
18: B ReO,Rd,Rx <stall for LD latency> :  <nop>
19: BNZ R20, Loop
ADD F4,F0,F4 3 <nop=
<stall due to DIVD latency= ;. <nop=
<stall due to DIVD latency= ;. <nop=
<stall due to DIVD latency= ;. <nop=
<stall due to DIVD latency= ;. <nop=
<stall due to DIVD latency= ;. <nop=
<stall due to DIVD latency= ;. <nop=
ADDD F10,F8,F2 ; ADDI Rx,Rx, #8
ADDI Ry,Ry,#8 : SD F4,0(Ry)
SUB R20,R4,Rx : BNZ R20, Loop
<nop> : <stall due to BNZ>

cycles per loop iter 22
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Problem 4

[10] <3.6, 3.7> In the multiple-issue design of Exercise 3.3, you may have recog-
nized some subtle issues. Even though the two pipelines have the exact same
instruction repertoire, they are neither identical nor interchangeable, because
there is an implicit ordering between them that must reflect the ordering of the
instructions in the original program. If instruction N + | begins execution in Exe-
cution Pipe | at the same time that instruction N'begins in Pipe 0, and N + 1 hap-
pens to require a shorter execution latency than N, then NV + 1 will complete
before N (even though program ordering would have implied otherwise). Recite
at least two reasons why that could be hazardous and will require special consid-
erations in the microarchitecture. Give an example of two instructions from the
code in Figure 3.48 that demonstrate this hazard.




P4 - solution

1. If an interrupt occurs between N and N + 1, then N + 1 must not have been
allowed to write its results to any permanent architectural state. Alternatively,
it might be permissible to delay the interrupt until N + 1 completes.

2. If Nand N + 1 happen to target the same register or architectural state (say,
memory), then allowing N to overwrite what NV + 1 wrote would be wrong.

3. N might be a long floating-point op that eventually traps. N + 1 cannot be
allowed to change arch state in case N is to be retried.

Long-latency ops are at highest risk of being passed by a subsequent
op. The DIVD instr will complete long after the LD F4,0(Ry), for
example.




Problem 5

[20] <3.7> Reorder the instructions to improve performance of the code in Figure
3.48. Assume the two-pipe machine in Exercise 3.3 and that the out-of-order
completion issues of Exercise 3.4 have been dealt with successfully. Just worry
ahbout observing true data dependences and functional unit latencies for now.
How many cycles does your reordered code take?




P5-solution

Execution pipe 0 Execution pipe 1
Loop: LD F2,0(Rx) : LD F4,0(Ry)
=stall for LD Tatency= : <stall for LD latency=
=stall for LD Tatency= : <stall for LD latency=
=stall for LD Tatency= : <stall for LD latency=
=stall for LD Tatency= : <stall for LD latency=
DIVD F8,F2,F0 H ADDD F4,F0,F4
MULTD F2,F6,F2 : <stall due to ADDD latency>
<stall due to DIVD latency=> ; SD F4,0(Ry)
=stall due to DIVD latency= H =nop= #ops: 11
=stall due to DIVD latency= H =nop= #mops: (20x2)-11=29

=stall due to DIVD latency= H ADDI Rx,Rx,#8
=stall due to DIVD latency= H ADDI Ry,Ry,#8

=stall due to DIVD latency= H =nop=

=stall due to DIVD latency= H =nop=

=stall due to DIVD latency= H =nop=

<stall due to DIVD latency= ; <nop=

<stall due to DIVD latency= ; <nop=

<stall due to DIVD latency= : SUB R20,R4,Rx
ADDD F10,F8,F2 ; BNZ R20, Loop
<nop> : <s5tall due to BNZ>

cycles per loop iter 20
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Problem 6

[10/10/10] <3.1, 3.2> Every cycle that does not initiate a new operation in a pipe
is a lost opportunity, in the sense that your hardware 18 not living up to its poten-

tial.
a. [10]<3.1, 3.2> In your reordered code from Exercise 3.5, what fraction of all
cycles, counting both pipes, were wasted (did not initiate a new op)?

b. [10]<3.1, 3.2> Loop unrolling is one standard compiler technique for finding
more parallelism in code, in order to minimize the lost opportunities for per-
formance. Hand-unroll two 1terations of the loop in your reordered code from

Exercise 3.5.

c. [10] <3.1, 3.2> What speedup did you obtain? (For this exercise, just color
the N + 1 iteration’s instructions green to distinguish them from the Nth itera-
tion's instructions; if you were actually unrolling the loop, you would have to
reassign registers to prevent collisions between the iterations.)




P6 a - solution

= The fraction of all cycles (for both pipes) wasted in the
reordered code in Problem 5 is:

0.275 = 11 operation / 2 x 20 opportunities =» 27.5%

1- 0.275 = 0.725 =» 72.5 % pipeline utilization




P 6 b 'S O I u t I O n Execution pipe 0 Execution pipe 1

Loop: LD F2,0(Rx) ;LD F4,0(Ry)
LD F2,0(Rx) ; LD F4,0(Ry)
=stall for LD Tatency= : <stall for LD Tatency=
=stall for LD latency= ;  =stall for LD latency=
=stall for LD latency= ;  =stall for LD latency=
DIVD F8,F2,F0 : ADDD F4,F0,F4
DIVD F8,F2,F0 ; ADDD F4,F0,F4
MULTD F2,F0,F2 ; SD F4,0(Ry)
MULTD F2,F6,F2 ;  SD F4,0(Ry)
<stall due to DIVD latency= i <hop=
<stall due to DIVD latency= ; ADDI Rx,Rx,#16
<stall due to DIVD latency= ; ADDI Ry,Ry,#16
<stall due to DIVD latency= i <hop=
=<stall due to DIVD latency= i <hop=
=<stall due to DIVD latency= i <hop=
=<stall due to DIVD latency= i <hop=
=<stall due to DIVD latency= i <hop=
=<stall due to DIVD latency= i <hop=
=<stall due to DIVD latency= i <hop=
ADDD F10,F8,F2 ; SUB R20,R4 ,Rx
ADDD F10,F8,F2 ; BNZ R20,Loop
<nop> :  <stall due to BNZI=
cycles per loop iter 22
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P6c -solution

s Speedup = Execution time without enhancement /
Execution time with enhancement

S=20/(22/2) =20/11 = 1.82




