
1 Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 3

Instruction-Level Parallelism

and Its Exploitation

Computer Architecture
A Quantitative Approach, Fifth Edition

2

Contents

1. Pipelining; hazards

2. ILP - data, name, and control dependence

3. Compiler techniques for exposing ILP: Pipeline scheduling,

Loop unrolling, Strip mining, Branch prediction

4. Register renaming

5. Multiple issue and static scheduling

6. Speculation

7. Energy efficiency

8. Multi-threading

9. Fallacies and pitfalls

10. Exercises

Copyright © 2012, Elsevier Inc. All rights reserved.

3 Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions

 Exploits “Instruction Level Parallelism (ILP)”

 Two main approaches:
 Dynamic  hardware-based

 Used in server and desktop processors

 Not used as extensively in Parallel Multiprogrammed
Microprocessors (PMP)

 Static approaches  compiler-based
 Not as successful outside of scientific applications

In
tro

d
u
c
tio

n

4

Review of basic concepts

 Pipelining  each instruction is split up into a sequence of

steps – different steps can be executed concurrently by

different circuitry.

 A basic pipeline in a RISC processor
 IF – Instruction Fetch

 ID – Instruction Decode

 EX – Instruction Execution

 MEM – Memory Access

 WB – Register Write Back

 Two techniques:

 Superscalar  A superscalar processor executes more than one

instruction during a clock cycle.

 VLIW  very long instruction word – compiler packs multiple

independent operations into an instruction

dcm

5

Basic superscalar 5-stage pipeline

Copyright © 2012, Elsevier Inc. All rights reserved.

Superscalar a processor executes more than one instruction during a

clock cycle by simultaneously dispatching multiple instructions to

redundant functional units on the processor.

The hardware determines (statically/ dynamically) which one of a block on

n instructions will be executed next.

A single-core superscalar processor  SISD

A multi-core superscalar  MIMD.

6

Hazards pipelining could lead to incorrect results.

 Data dependence “true dependence” Read after Write hazard (RAW)

 i: sub R1, R2, R3 % sub d,s,t  d =s-t

 i+1: add R4, R1, R3 % add d,s t  d = s+t

Instruction (i+1) reads operand (R1) before instruction (i) writes it.

 Name dependence “anti dependence”  two instructions use the same

register or memory location, but there is no data dependency between them.

 Write after Read hazard (WAR)  Example:

 i: sub R4, R5, R3

 i+1: add R5, R2, R3

 i+2: mul R6, R5, R7

Instruction (i+1) writes operand (R5) before instruction (i) reads it.

 Write after Write (WAW) (Output dependence)  Example

 i: sub R6, R5, R3

 i+1: add R6, R2, R3

 i+2: mul R1, R2, R7

 Instruction (i+1) writes operand (R6) before instruction (i) writes it.

dcm

7

More about hazards

 Data hazards  RAW, WAR, WAW.

 Structural hazard  occurs when a part of the processor's hardware is

needed by two or more instructions at the same time. Example: a single

memory unit that is accessed both in the fetch stage where an instruction

is retrieved from memory, and the memory stage where data is written

and/or read from memory. They can often be resolved by separating the

component into orthogonal units (such as separate caches) or bubbling

the pipeline.

 Control hazard (branch hazard)  are due to branches. On many

instruction pipeline microarchitectures, the processor will not know the

outcome of the branch when it needs to insert a new instruction into the

pipeline (normally the fetch stage).

Copyright © 2012, Elsevier Inc. All rights reserved.

8 Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction-level parallelism (ILP)

 When exploiting instruction-level parallelism, goal is to
maximize CPI
 Pipeline CPI =

 Ideal pipeline CPI +

 Structural stalls +

 Data hazard stalls +

 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions

 Must optimize across branches

In
tro

d
u
c
tio

n

9 Copyright © 2012, Elsevier Inc. All rights reserved.

Data dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically

 Use SIMD (vector processors and GPUs)

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if

 Instruction i produces a result that may be used by instruction j

 Instruction j is data dependent on instruction k and instruction k
is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

In
tro

d
u
c
tio

n

10 Copyright © 2012, Elsevier Inc. All rights reserved.

Data dependence

 Dependencies are a property of programs

 Pipeline organization determines if dependence
is detected and if it is s causes a “stall.”

 Data dependence conveys:
 Possibility of a hazard

 Order in which results must be calculated

 Upper bound on exploitable instruction level
parallelism

 Dependencies that flow through memory
locations are difficult to detect

In
tro

d
u
c
tio

n

11 Copyright © 2012, Elsevier Inc. All rights reserved.

Name dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions

 Antidependence: instruction j writes a register or
memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location
 Ordering must be preserved

 To resolve, use renaming techniques

In
tro

d
u
c
tio

n

12 Copyright © 2012, Elsevier Inc. All rights reserved.

Control dependence

 Every instruction is control dependent on some set of
branches and, in general, the control dependencies must be
preserved to ensure program correctness.
 Instruction control dependent on a branch cannot be moved before

the branch so that its execution is no longer controller by the branch.

 An instruction not control dependent on a branch cannot be moved
after the branch so that its execution is controlled by the branch.

 Example

 if C1 {

 S1;

 };

 if C2 {

 S2;

 };

 S1 is control dependent on C1; S2 is control dependent on C2 but not on C1

In
tro

d
u
c
tio

n

13

Properties essential to program correctness

 Preserving exception behavior  any change in instruction order must not

change the order in which exceptions are raised. Example:

 DADDU R1, R2, R3

 BEQZ R1, L1

 L1 LW R4, 0(R1)

 Can we move LW before BEQZ ?

 Preserving data flow  the flow of data between instructions that produce

results and consumes them. Example:

 DADDU R1, R2, R3

 BEQZ R4, L1

 DSUBU R1, R8, R9

 L1 LW R5, 0(R2)

 OR R7, R1, R8

 Does OR depend on DADDU and DSUBU?

dcm

14 Copyright © 2012, Elsevier Inc. All rights reserved.

Examples

 OR instruction dependent
on DADDU and DSUBU

 Assume R4 isn’t used after
skip
 Possible to move DSUBU

before the branch

In
tro

d
u
c
tio

n
 • Example 1:

 DADDU R1,R2,R3

 BEQZ R4,L

 DSUBU R1,R1,R6

L: …

 OR R7,R1,R8

• Example 2:
 DADDU R1,R2,R3

 BEQZ R12,skip

 DSUBU R4,R5,R6

 DADDU R5,R4,R9

skip:

 OR R7,R8,R9

15

Compiler techniques for exposing ILP

 Loop transformation technique to optimize a program's execution speed:

1. reduce or eliminate instructions that control the loop, e.g., pointer

arithmetic and "end of loop" tests on each iteration

2. hide latencies, e.g., the delay in reading data from memory

3. re-write loops as a repeated sequence of similar independent

statements  space-time tradeoff

4. reduce branch penalties;

 Methods

1. pipeline scheduling

2. loop unrolling

3. strip mining

4. branch prediction

 Copyright © 2012, Elsevier Inc. All rights reserved.

16 Copyright © 2012, Elsevier Inc. All rights reserved.

1. Pipeline scheduling

 Pipeline stall  delay in execution of an instruction in an instruction
pipeline in order to resolve a hazard. The compiler can reorder
instructions to reduce the number of pipeline stalls.

 Pipeline scheduling Separate dependent instruction from the
source instruction by the pipeline latency of the source instruction

 Example:

for (i=999; i>=0; i=i-1)

 x[i] = x[i] + s;

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

17 Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline stalls

Assumptions:
1. S  F2

2. The element of the array with the highest address  R1

3. The element of the array with the lowest address +8  R2

Loop: L.D F0,0(R1) % load array element in F0

 stall % next instruction needs the result in F0

 ADD.D F4,F0,F2 % increment array element

 stall

 stall % next instruction needs the result in F4

 S.D F4,0(R1) % store array element

 DADDUI R1,R1,#-8 % decrement pointer to array element

 stall (assume integer load latency is 1) % next instruction needs result in R1

 BNE R1,R2,Loop % loop if not the last element

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

18 Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline scheduling

Scheduled code:

Loop: L.D F0,0(R1)

 DADDUI R1,R1,#-8

 ADD.D F4,F0,F2

 stall

 stall

 S.D F 4,8(R1)

 BNE R1,R2,Loop

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

19

2. Loop unrolling

 Given the same code

Loop: L.D F0,0(R1)

 DADDUI R1,R1,#-8

 ADD.D F4,F0,F2

 S.D F4,8(R1)

 BNE R1,R2,Loop

 Assume # elements of the array with starting address in R1 is
divisible by 4

 Unroll by a factor of 4

 Eliminate unnecessary instructions.

dcm

20 Copyright © 2012, Elsevier Inc. All rights reserved.

Unrolled loop

Loop: L.D F0,0(R1)

 ADD.D F4,F0,F2

 S.D F4,0(R1) % drop DADDUI & BNE

 L.D F6,-8(R1)

 ADD.D F8,F6,F2

 S.D F8,-8(R1) %drop DADDUI & BNE

 L.D F10,-16(R1)

 ADD.D F12,F10,F2

 S.D F12,-16(R1) % drop DADDUI & BNE

 L.D F14,-24(R1)

 ADD.D F16,F14,F2

 S.D F16,-24(R1)

 DADDUI R1,R1,#-32

 BNE R1,R2,Loop

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

 Live registers: F0-1, F2-3, F4-5, F6-7, F8-9,F10-11, F12-13, F14-15,
and F16-15; also R1 and R2

 In the original code: only F0-1, F2-3, and F4-5; also R1 and R2

21 Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline schedule the unrolled loop

Loop: L.D F0,0(R1)

 L.D F6,-8(R1)

 L.D F10,-16(R1)

 L.D F14,-24(R1)

 ADD.D F4,F0,F2

 ADD.D F8,F6,F2

 ADD.D F12,F10,F2

 ADD.D F16,F14,F2

 S.D F4,0(R1)

 S.D F8,-8(R1)

 DADDUI R1,R1,#-32

 S.D F12,16(R1)

 S.D F16,8(R1)

 BNE R1,R2,Loop

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

Pipeline scheduling reduces

the number of stalls.

 1. The L.D instruction

requires only one cycle so

when ADD.D are issued F4,

F8, F12 , and F16 are already

loaded.

2. The ADD.D requires only

two cycles so that two S.D

can proceed immediately

3. The array pointer is

updated after the first two S.D

so the loop control can

proceed immediately after the

last two S.D

22

Loop unrolling & scheduling summary

 Use different registers to avoid unnecessary constraints.

 Adjust the loop termination and iteration code.

 Find if the loop iterations are independent except the loop maintenance

code  if so unroll the loop

 Analyze memory addresses to determine if the load and store from

different iterations are independent if so interchange load and stores

in the unrolled loop

 Schedule the code while ensuring correctness.

 Limitations of loop unrolling

 Decrease of the amount of overhead with each roll

 Growth of the code size

 Register pressure (shortage of registers)  scheduling to increase ILP

increases the number of live values thus, the number of registers

Copyright © 2012, Elsevier Inc. All rights reserved.

23

More compiler-based loop transformations

 fission/distribution break a loop into multiple loops over the same index range but each

taking only a part of the loop's body. Can improve locality of reference, both of the data

being accessed in the loop and the code in the loop's body.

 fusion/combining  when two adjacent loops would iterate the same number of times their

bodies can be combined as long as they make no reference to each other's data.

 interchange/permutation  exchange inner loops with outer loops. When the loop variables

index into an array, such a transformation can improve locality of reference.

 inversion  changes a standard while loop into a do/while (a.k.a. repeat/until) loop wrapped

in an if conditional, reducing the number of jumps by two for cases where the loop is

executed. Doing so duplicates the condition check (increasing the size of the code) but is

more efficient because jumps usually cause a pipeline stall.

 reversal  reverses the order in which values are assigned to the index variable. This is a

subtle optimization which can help eliminate dependencies and thus enable other

optimizations.

 scheduling  divide a loop into multiple parts that may be run concurrently on multiple

processors.

 skewing  take a nested loop iterating over a multidimensional array, where each iteration

of the inner loop depends on previous iterations, and rearranges its array accesses so that

the only dependencies are between iterations of the outer loop.

dcm

24 Copyright © 2012, Elsevier Inc. All rights reserved.

3. Strip mining

 The block size of the outer block loops is determined by

some characteristic of the target machine, such as the

vector register length or the cache memory size.

 Number of iterations = n

 Goal: make k copies of the loop body

 Generate pair of loops:
 First executes n mod k times

 Second executes n / k times

 “Strip mining”

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

25

4. Branch prediction

 Branch prediction  guess whether a conditional jump will be taken or not.

 Goal  improve the flow in the instruction pipeline.

 Speculative execution  the branch that is guessed to be the most likely

is then fetched and speculatively executed.

 Penalty  if it is later detected that the guess was wrong then the

speculatively executed or partially executed instructions are discarded and

the pipeline starts over with the correct branch, incurring a delay.

 How?  the branch predictor keeps records of whether branches are

taken or not taken. When it encounters a conditional jump that has been

seen several times before then it can base the prediction on the history.

The branch predictor may, for example, recognize that the conditional

jump is taken more often than not, or that it is taken every second time

 Note: not to be confused with branch target prediction  guess the target of a

taken conditional or unconditional jump before it is computed by decoding and

executing the instruction itself. Both are often combined into the same circuitry.

Copyright © 2012, Elsevier Inc. All rights reserved.

26 Copyright © 2012, Elsevier Inc. All rights reserved.

Predictors

 Basic 2-bit predictor:
 For each branch:

 Predict taken or not taken

 If the prediction is wrong two consecutive times, change prediction

 Correlating predictor:
 Multiple 2-bit predictors for each branch

 One for each possible combination of outcomes of preceding n
branches

 Local predictor:
 Multiple 2-bit predictors for each branch

 One for each possible combination of outcomes for the last n
occurrences of this branch

 Tournament predictor:
 Combine correlating predictor with local predictor

B
ra

n
c
h
 P

re
d
ic

tio
n

27 Copyright © 2012, Elsevier Inc. All rights reserved.

Branch prediction performance
B

ra
n
c
h
 P

re
d
ic

tio
n

28 Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic scheduling

 Rearrange order of instructions to reduce stalls
while maintaining data flow

 Advantages:
 Compiler doesn’t need to have knowledge of

microarchitecture

 Handles cases where dependencies are unknown at
compile time

 Disadvantage:
 Substantial increase in hardware complexity

 Complicates exceptions

B
ra

n
c
h
 P

re
d
ic

tio
n

29 Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic scheduling

 Dynamic scheduling implies:
 Out-of-order execution

 Out-of-order completion

 Creates the possibility for WAR and WAW
hazards

 Tomasulo’s Approach
 Tracks when operands are available

 Introduces register renaming in hardware
 Minimizes WAW and WAR hazards

B
ra

n
c
h
 P

re
d
ic

tio
n

30 Copyright © 2012, Elsevier Inc. All rights reserved.

Register renaming

 Example:

 DIV.D F0,F2,F4

 ADD.D F6,F0,F8

 S.D F6,0(R1)

 SUB.D F8,F10,F14

 MUL.D F6,F10,F8

+ name dependence with F6

B
ra

n
c
h
 P

re
d
ic

tio
n

antidependence WAR - F8

antidependence WAW – F6

31 Copyright © 2012, Elsevier Inc. All rights reserved.

Register renaming

 Example: add two temporary registers S and T

i: DIV.D F0,F2,F4

i+1: ADD.D S,F0,F8 (instead of ADD.D F6,F0,F8)

i+2 S.D S,0(R1) (instead of S.D F6,0(R1)

i+3 SUB.D T,F10,F14 (instead of SUB.D F8,F10,F14)

i+4 MUL.D F6,F10,T (instead of MUL.D F6,F10,F8)

 Now only RAW hazards remain, which can be strictly

ordered

B
ra

n
c
h
 P

re
d
ic

tio
n

32 Copyright © 2012, Elsevier Inc. All rights reserved.

Register renaming

 Register renaming is provided by reservation stations (RS)
 Contains:

 The instruction

 Buffered operand values (when available)

 Reservation station number of instruction providing the operand
values

 RS fetches and buffers an operand as soon as it becomes available
(not necessarily involving register file)

 Pending instructions designate the RS to which they will send their
output

 Result values broadcast on a result bus, called the common data bus (CDB)

 Only the last output updates the register file

 As instructions are issued, the register specifiers are renamed with
the reservation station

 May be more reservation stations than registers

B
ra

n
c
h
 P

re
d
ic

tio
n

33 Copyright © 2012, Elsevier Inc. All rights reserved.

Tomasulo’s algorithm

 Goal  high performance without special compilers when
the hardware has only a small number of floating point
(FP) registers.

 Designed in 1966 for IBM 360/91 with only 4 FP registers.

 Used in modern processors: Pentium 2/3/4, Power PC 604,
Neehalem…..

 Additional hardware needed
 Load and store buffers  contain data and addresses, act like

reservation station.

 Reservation stations  feed data to floating point arithmetic units.

B
ra

n
c
h
 P

re
d
ic

tio
n

34 dcm

35 Copyright © 2012, Elsevier Inc. All rights reserved.

36 Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction execution steps

 Issue
 Get next instruction from FIFO queue

 If available RS, issue the instruction to the RS with operand values if
available

 If operand values not available, stall the instruction

 Execute

 When operand becomes available, store it in any reservation stations
waiting for it

 When all operands are ready, issue the instruction

 Loads and store maintained in program order through effective
address

 No instruction allowed to initiate execution until all branches that
proceed it in program order have completed

 Write result

 Broadcast result on CDB into reservation stations and store buffers

 (Stores must wait until address and value are received)

B
ra

n
c
h
 P

re
d
ic

tio
n

37 Copyright © 2012, Elsevier Inc. All rights reserved.

Example
B

ra
n
c
h
 P

re
d
ic

tio
n

38

Notations

David Patterson – class notes

39

Example of Tomasulo algorithm

 3 – load buffers (Load1, Load 2, Load 3)

 5 - reservation stations (Add1, Add2, Add3, Mult 1, Mult 2).

 16 pairs of floating point registers F0-F1, F2-F3,…..F30-31.

 Clock cycles: addition  2; multiplication  10; division 40;

David Patterson – class notes

40

Clock cycle 1

 A load from memory location 34+(R2) is issued; data will be stored

later in the first load buffer (Load1)

David Patterson – class notes

41

Clock cycle 2

 The Second load from memory loaction 45+(R3) is issued; data will be

stored in load buffer 2 (Load2).

 Multiple loads can be outstanding.

David Patterson – class notes

42

Clock cycle 3

 First load completed  SUBD instruction is waiting for the data.

 MULTD  issued

 Register names are removed/renamed in Reservation Stations

David Patterson – class notes

43

Clock cycle 4

 Load2 is completed; MULTD waits for the results of it.

 The results of Load 1 are available for the SUBD instruction.

David Patterson – class notes

44

Clock cycle 5

 The result of Load2 available for MULTD executed by Mult1 and SUBD

executed by Add1. Both can now proceed as they have both operands.

 Mult2 executes DIVD and cannot proceed yet as it waits for the results of

Add1.

David Patterson – class notes

45

Clock cycle 6

 Issue ADDD

David Patterson – class notes

46

Clock cycle 7

 The results of the SUBD produced by Add1 will be available in the next

cycle.

 ADDD instruction executed by Add2 waits for them.

David Patterson – class notes

47

Clock cycle 8

 The results of SUBD are deposited by the Add1 in F8-F9

David Patterson – class notes

48

Clock cycle 9

David Patterson – class notes

49

Clock cycle 10

 ADDD executed by Add2 completes, it needed 2 cycles.

 There are 5 more cycles for MULTD executed by Mult1.

David Patterson – class notes

50

Clock cycle 11

 Only MULTD and DIVD instructions did not complete. DIVD is waiting for

the result of MULTD before moving to the execute stage.

David Patterson – class notes

51

Clock cycle 12

David Patterson – class notes

52

Clock cycle 13

David Patterson – class notes

53

Clock cycle 14

David Patterson – class notes

54

Clock cycle 15

 MULTS instruction executed by Mult1 unit completed execution.

 DIVD in instruction executed by the Mult2 unit is waiting for it.

David Patterson – class notes

55

Clock cycle 16

David Patterson – class notes

56

Clock cycle 55

 DIVD will finish execution in cycle 56 and the result will be in F6-F7

in cycle 57.

David Patterson – class notes

57 Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware-based speculation

 Goal  overcome control dependency by speculating.

 Allow instructions to execute out of order but force them to
commit to avoid: (i) updating the state or (ii) taking an
exception

 Instruction commit  allow an instruction to update the
register file when instruction is no longer speculative

 Key ideas:
1. Dynamic branch prediction.

2. Execute instructions along predicted execution paths, but only
commit the results if prediction was correct.

3. Dynamic scheduling to deal with different combination of basic
blocks

B
ra

n
c
h
 P

re
d
ic

tio
n

58 Copyright © 2012, Elsevier Inc. All rights reserved.

How speculative execution is done

 Need additional hardware to prevent any irrevocable
action until an instruction commits.
 Reorder buffer (ROB)

 Modify functional units – operand source is ROB rather than
functional units

 Register values and memory values are not written until
an instruction commits

 On misprediction:

 Speculated entries in ROB are cleared

 Exceptions:

 Not recognized until it is ready to commit

B
ra

n
c
h
 P

re
d
ic

tio
n

59

 Extended floating point unit

 FP using Tomasulo’s
algorithm extended to
handle speculation.

 Reorder buffer now

 holds the result of

 instruction between

 completion and

 commit. Has 4 fields

 Instruction type:
branch/store/register

 Destination field:
register number

 Value field: output
value

 Ready field:
completed
execution?

 Operand source is now
reorder buffer instead
of functional unit

dcm

60 dcm

Multiple issue and static scheduling

 To achieve CPI < 1 complete multiple instructions per
clock cycle

 Three flavors of multiple issue processors

1. Statically scheduled superscalar processors
a. Issue a varying number of instructions per clock cycle

b. Use in-order execution

2. VLIW (very long instruction word) processors
a. Issue a fixed number of instructions as one large instruction

b. Instructions are statically scheduled by the compiler

3. Dynamically scheduled superscalar processors
a. Issue a varying number of instructions per clock cycle

b. Use out-of-order execution

M
u
ltip

le
 Is

s
u
e
 a

n
d
 S

ta
tic

 S
c
h
e
d
u
lin

g

61 Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple issue processors
M

u
ltip

le
 Is

s
u
e
 a

n
d
 S

ta
tic

 S
c
h
e
d
u
lin

g

62

VLIW Processors

 Package multiple operations into one instruction

 Must be enough parallelism in code to fill the available
slots,

 Disadvantages:
 Statically finding parallelism

 Code size

 No hazard detection hardware

 Binary code compatibility

Copyright © 2012, Elsevier Inc. All rights reserved.

63 dcm

Example
 Unroll the loop for x[i]= x[i] +s

to eliminate any stalls. Ignore
delayed branches.

 The code we had before
shown on the right 

 Package in one VLIW
instruction :

 One integer instruction (or
branch)

 Two independent floating-
point operations

 Two independent memory
references.

M
u
ltip

le
 Is

s
u
e
 a

n
d
 S

ta
tic

 S
c
h
e
d
u
lin

g

 Loop: L.D F0,0(R1)

 L.D F6,-8(R1)

 L.D F10,-16(R1)

 L.D F14,-24(R1)

 ADD.D F4,F0,F2

 ADD.D F8,F6,F2

 ADD.D F12,F10,F2

 ADD.D F16,F14,F2

 S.D F4,0(R1)

 S.D F8,-8(R1)

 DADDUI R1,R1,#-32

 S.D F12,16(R1)

 S.D F16,8(R1)

 BNE R1,R2,Loop

64

Example

Copyright © 2012, Elsevier Inc. All rights reserved.

65 Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic scheduling, multiple issue, speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline control table in

half clock cycles

 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies between the
instructions

 Hybrid approaches.

 Issue logic can become bottleneck

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

66

Multiple issue processor with speculation

 The organization should allow simultaneous execution for all issues in

one clock cycle of one of the following operations:

 FP multiplication

 FP addition

 Integer operations

 Load/Store

 Several datapaths must be widened to support multiple issues.

 The instruction issue logic will be fairly complex.

Copyright © 2012, Elsevier Inc. All rights reserved.

67 Copyright © 2012, Elsevier Inc. All rights reserved.

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

Multiple issue processor with speculation

68 Copyright © 2012, Elsevier Inc. All rights reserved.

 Assign a reservation station and a reorder buffer for every instruction
that may be issued in the next bundle.

 To pre-allocate reservation stations limit the number of instructions of a
given class that can be issued in a “bundle”

 I.e. one FP, one integer, one load, one store

 Examine all the dependencies among the instructions in the bundle

 If dependencies exist in bundle, use the assigned ROB number to
update the reservation table for dependent instructions. Otherwise, use
the existing reservations table entries for the issuing instruction.

 Also need multiple completion/commit

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

Basic strategy for updating the issue logic

69 Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: LD R2,0(R1) ;R2=array element

 DADDIU R2,R2,#1 ;increment R2

 SD R2,0(R1) ;store result

 DADDIU R1,R1,#8 ;increment pointer

 BNE R2,R3,LOOP ;branch if not last element

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

Example

70

Dual issue without speculation

 Time of issue, execution, and writing the result for a dual-issue of the pipeline.

 The LD following the BNE (cycles 3, 6) cannot start execution earlier, it must

wait until the branch outcome is determined as there is no speculation

Copyright © 2012, Elsevier Inc. All rights reserved.

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

71

Dual issue with speculation

 Time of issue, execution, writing the result, and commit.

 The LD following the BNE can start execution early; speculation is supported.

Copyright © 2012, Elsevier Inc. All rights reserved.

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

72

Advanced techniques for instruction delivery

 Increase instruction fetch bandwidth of a multi-issue processor to

match the average throughput.

 If an instruction is a branch we will have a zero branch penalty if we

know the next PC.

 Requires

 Wide enough datapaths to IC (Instruction cache)

 Effective branch handling

 Branch target buffer  cache that stores the predicted address for

the next instruction after branch.

 If the PC of a fetched instruction matches the address in this cache

 the corresponding predicted PC is used as the next PC.

Copyright © 2012, Elsevier Inc. All rights reserved.

73 Copyright © 2012, Elsevier Inc. All rights reserved.

Next PC prediction buffer, indexed by current PC

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Branch-target buffer

74 Copyright © 2012, Elsevier Inc. All rights reserved.

 Optimization:

 Larger branch-target buffer

 Add target instruction into buffer to deal with longer

decoding time required by larger buffer

 “Branch folding”

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Branch folding

75 Copyright © 2012, Elsevier Inc. All rights reserved.

 Most unconditional branches come from function returns

 The same procedure can be called from multiple sites

 Causes the buffer to potentially forget about the return address

from previous calls

 Create return address buffer organized as a stack

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Return address predictor

76 Copyright © 2012, Elsevier Inc. All rights reserved.

 Design monolithic unit that performs:

 Branch prediction

 Instruction prefetch

 Fetch ahead

 Instruction memory access and buffering

 Deal with crossing cache lines

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Integrated instruction fetch unit

77 Copyright © 2012, Elsevier Inc. All rights reserved.

 Instead of virtual registers from reservation stations and reorder

buffer, create a single register pool

 Contains visible registers and virtual registers

 Use hardware-based map to rename registers during issue

 WAW and WAR hazards are avoided

 Speculation recovery occurs by copying during commit

 Still need a ROB-like queue to update table in order

 Simplifies commit:

 Record that mapping between architectural register and physical

register is no longer speculative

 Free up physical register used to hold older value

 In other words: SWAP physical registers on commit

 Physical register de-allocation is more difficult

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Register renaming vs. reorder buffers

78 Copyright © 2012, Elsevier Inc. All rights reserved.

 Combining instruction issue with register renaming:

 Issue logic pre-reserves enough physical registers for the

bundle (fixed number?)

 Issue logic finds dependencies within bundle, maps registers

as necessary

 Issue logic finds dependencies between current bundle and

already in-flight bundles, maps registers as necessary

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Integrated issue and renaming

79 Copyright © 2012, Elsevier Inc. All rights reserved.

 How much to speculate

 Mis-speculation degrades performance and power

relative to no speculation

 May cause additional misses (cache, TLB)

 Prevent speculative code from causing higher

costing misses (e.g. L2)

 Speculating through multiple branches

 Complicates speculation recovery

 No processor can resolve multiple branches per

cycle

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

How much to speculate?

80 Copyright © 2012, Elsevier Inc. All rights reserved.

 Speculation and energy efficiency

 Note: speculation is only energy efficient when it significantly

improves performance

 Value prediction

 Uses:

 Loads that load from a constant pool

 Instruction that produces a value from a small set of values

 Not been incorporated into modern processors

 Similar idea--address aliasing prediction--is used on some

processors

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Energy efficiency

81

Multithreading

 Distinction between TLP (Thread-level parallelism) and multithreading:

 A multiprocessor  multiple independent threads run concurrently.

 A uniprocessor system  only one thread can be active at one time

 Multithreading  improve throughput in uniprocessor systems:

 Shares most of the processor core among the set of threads

 Duplicates only registers, program counter.

 Separate page tables for each thread.

dcm

82

Hardware approaches to multithreading

1. Fine-grain multithreading  interleaves execution of multiple threads,

switches between threads in each clock cycle, round-robin.

 Increase in throughput, but slows down execution of each thread.

 Examples Sun Niagra, Nvidia GPU

2. Coarse grain multithreading  switches only on costly stalls e.g., level 2

or 3 cache misses

 High pipeline start-up costs

 No processors

3. Simultaneous multithreading (SMT)  fine-grain multithreading on

multiple-issue, dynamically scheduled processor.

 Most common

Copyright © 2012, Elsevier Inc. All rights reserved.

83 Copyright © 2012, Elsevier Inc. All rights reserved.

84

ARM Cortex A8

 Dual-issue, statically scheduled superscalar; dynamic issue detection.

 Two instructions per clock cycle, CPI= 0.5.

 Used as basis Apple A9 used in iPad, Intel Core i7 and processors used

in smartphones.

Copyright © 2012, Elsevier Inc. All rights reserved.

85 Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 3.37 The five-stage instruction decode of the A8. In the first stage, a PC produced by the fetch unit (either from the

branch target buffer or the PC incrementer) is used to retrieve an 8-byte block from the cache. Up to two instructions are

decoded and placed into the decode queue; if neither instruction is a branch, the PC is incremented for the next fetch. Once in

the decode queue, the scoreboard logic decides when the instructions can issue. In the issue, the register operands are read;

recall that in a simple scoreboard, the operands always come from the registers. The register operands and opcode are sent to

the instruction execution portion of the pipeline.

86 Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 3.38 The five-stage instruction decode of the A8. Multiply operations are always performed in ALU pipeline 0.

87 Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 3.39 The estimated composition of the CPI on the ARM A8 shows that pipeline stalls are the primary addition to the

base CPI. eon deserves some special mention, as it does integer-based graphics calculations (ray tracing) and has very few cache

misses. It is computationally intensive with heavy use of multiples, and the single multiply pipeline becomes a major bottleneck.

This estimate is obtained by using the L1 and L2 miss rates and penalties to compute the L1 and L2 generated stalls per instruction.

These are subtracted from the CPI measured by a detailed simulator to obtain the pipeline stalls. Pipeline stalls include all three

hazards plus minor effects such as way misprediction.

88 Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 3.40 The performance ratio for the A9 compared to the A8, both using a 1 GHz clock and the same size caches for L1

and L2, shows that the A9 is about 1.28 times faster. Both runs use a 32 KB primary cache and a 1 MB secondary cache, which is 8-

way set associative for the A8 and 16-way for the A9. The block sizes in the caches are 64 bytes for the A8 and 32 bytes for the A9. As

mentioned in the caption of Figure 3.39, eon makes intensive use of integer multiply, and the combination of dynamic scheduling and a

faster multiply pipeline significantly improves performance on the A9. twolf experiences a small slowdown, likely due to the fact that

its cache behavior is worse with the smaller L1 block size of the A9.

89 Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 3.36 The basic structure of the A8 pipeline is 13 stages. Three cycles are used for instruction fetch and four for

instruction decode, in addition to a five-cycle integer pipeline. This yields a 13-cycle branch misprediction penalty. The

instruction fetch unit tries to keep the 12-entry instruction queue filled.

90

Intel i7 pipeline

Copyright © 2012, Elsevier Inc. All rights reserved.

Figure 3.41 The Intel Core

i7 pipeline structure shown

with the memory system

components.

The total pipeline depth is

14 stages, with branch

mispredictions costing 17

cycles.

There are 48 load and 32

store buffers. The six

independent functional units

can each begin execution of

a ready micro-op in the

same cycle.

91

SPECCPU2006 -benchmark

Copyright © 2012, Elsevier Inc. All rights reserved.

• CPU2006 is SPEC's next-generation, industry-standardized, CPU-

intensive benchmark suite, stressing a system's processor, memory

subsystem and compiler.

• Provide a comparative measure of compute-intensive performance

across the widest practical range of hardware using workloads

developed from real user applications.

• These benchmarks are provided as source code and require the

user to be comfortable using compiler commands as well as other

commands via a command interpreter using a console or command

prompt window in order to generate executable binaries.

92

SPECCPU2006 - benchmark

dcm

 Peralbench Pearl; cut-down version of Perl v5.8.7

 Mcf  C; vehicle scheduling in public mass transportation. Integer arithmetic.

 Gobmk  C; executes a set of commands to analyze Go positions

 Hmmr  C; uses a Hidden Markov Model for searching gene databases

 Sjeng C; plays chess and several chess variants

 Libquantum C; library for the simulation of a quantum computer

 Omnetpp  C++; discrete event simulation of a large Ethernet network

 Astar  C++; derived from a portable 2D path-finding library for game AI

 Xalancbmk C++ program; XSLT processor for transforming XML documents

into HTML, text, or other XML document types

 Milc  C program for QCD (Quantum Chromodynamics)

 Namd  C++; classical molecular dynamics simulation

 Dealii C++; PDE solver using the adaptive finite element method

 Soplex C++; simplex linear program (LP) Solver

 Povray  C++; ray tracing in visualization

 Lbm C; computational fluid dynamics using the lattice Boltzmann method

 Sphynx3  C; speech recognition.

93

Performance of i7

Copyright © 2012, Elsevier Inc. All rights reserved.

Figure 3.42 The amount

of “wasted work” is

plotted by taking the ratio

of dispatched micro-ops

that do not graduate to all

dispatched micro-ops.

For example, the ratio is

25% for sjeng, meaning

that 25% of the

dispatched and executed

micro-ops are thrown

away.

94

I7 CPI

Copyright © 2012, Elsevier Inc. All rights reserved.

Figure 3.43 The CPI for

the 19 SPECCPU2006

benchmarks shows an

average CPI for 0.83 for

both the FP and integer

benchmarks, although the

behaviour is quite

different.

A. In the integer case, the

CPI values range from

0.44 to 2.66 with a

standard deviation of 0.77.

B. The variation in the FP

case is from 0.62 to 1.38

with a standard deviation

of 0.25.

95

Fallacies
 A. It is easy to predict the performance and the energy efficiency of

two different versions of the same instruction set architecture, if we

hold the technology constant. Case in point Intel i7 920, Intel Atom

230, and ARM A8

Copyright © 2012, Elsevier Inc. All rights reserved.

Figure 3.45 The relative performance and energy efficiency for a set of single-

threaded benchmarks shows the i7 920 is 4 to over 10 times faster than the Atom 230

but that it is about 2 times less power efficient on average! Performance is shown in

the columns as i7 relative to Atom, which is execution time (i7)/execution time (Atom).

Energy is shown with the line as Energy (Atom)/Energy (i7). The i7 never beats the

Atom in energy efficiency, although it is essentially as good on four benchmarks,

three of which are floating point. Only one core is active on the i7, and the rest are in

deep power saving mode. Turbo Boost is used on the i7, which increases its

performance advantage but slightly decreases its relative energy efficiency.

96 Copyright © 2012, Elsevier Inc. All rights reserved.

97 Copyright © 2012, Elsevier Inc. All rights reserved.

98

 Fallacies

 B. Processors with lower CPI will always be faster.

 C. Processors with faster clock rate will always be faster.

The product of the CPI and the clock rate determine performance!!

Copyright © 2012, Elsevier Inc. All rights reserved.

99

Problem solving

 Consider the following code; the latency of all the

instructions used by the code snippet are also shown in

Figure 3.48 below

Copyright © 2012, Elsevier Inc. All rights reserved.

100

Problem 1

 When a branch instruction is involved, the location of the following

delay slot instruction in the pipeline may be called a branch delay

slot. Branch delay slots are found mainly in DSP architectures and

older RISC architectures. MIPS, PA-RISC, ETRAX CRIS, SuperH,

and SPARC are RISC architectures that each have a single branch

delay slot.

Copyright © 2012, Elsevier Inc. All rights reserved.

101

P1 - solution

Copyright © 2012, Elsevier Inc. All rights reserved.

Each instruction requires one clock cycle of execution (a clock cycle in

which that instruction, and only that instruction, is occupying the

execution units; since every instruction must execute, the loop will take

at least that many clock cycles). To that base number, we add the extra

latency cycles. Don’t forget the branch shadow cycle.

102

Problem 2

Copyright © 2012, Elsevier Inc. All rights reserved.

103

P2 - solution

Copyright © 2012, Elsevier Inc. All rights reserved.

104

Problem 3

Copyright © 2012, Elsevier Inc. All rights reserved.

105

P3 -solution

Copyright © 2012, Elsevier Inc. All rights reserved.

106

Problem 4

Copyright © 2012, Elsevier Inc. All rights reserved.

107

P4 - solution

Long-latency ops are at highest risk of being passed by a subsequent

op. The DIVD instr will complete long after the LD F4,0(Ry), for

example.

Copyright © 2012, Elsevier Inc. All rights reserved.

108

Problem 5

Copyright © 2012, Elsevier Inc. All rights reserved.

109

P5-solution

Copyright © 2012, Elsevier Inc. All rights reserved.

110

Problem 6

Copyright © 2012, Elsevier Inc. All rights reserved.

111

P6 a - solution

 The fraction of all cycles (for both pipes) wasted in the

reordered code in Problem 5 is:

 0.275 = 11 operation / 2 x 20 opportunities  27.5%

 1- 0.275 = 0.725  72.5 % pipeline utilization

Copyright © 2012, Elsevier Inc. All rights reserved.

112

 P6b -solution

Copyright © 2012, Elsevier Inc. All rights reserved.

113

P6c -solution

 Speedup = Execution time without enhancement /

 Execution time with enhancement

 S = 20 / (22/2) = 20 /11 = 1.82

Copyright © 2012, Elsevier Inc. All rights reserved.

