
1

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Fifth Edition

Copyright © 2012, Elsevier Inc. All rights reserved.

2

Contents

1. Memory hierarchy

1. Basic concepts

2. Design techniques

2. Caches

1. Types of caches: Fully associative, Direct mapped, Set associative

2. Ten optimization techniques

3. Main memory

1. Memory technology

2. Memory optimization

3. Power consumption

4. Memory hierarchy case studies: Opteron, Pentium, i7.

5. Virtual memory

6. Problem solving

dcm

3

Introduction

 Programmers want very large memory with low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory

 Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories
 Gives the allusion of a large, fast memory being presented to the

processor

In
tro

d
u
c
tio

n

Copyright © 2012, Elsevier Inc. All rights reserved.

4

Memory hierarchy

Processor

L
a
te

n
c
y

L1 Cache

L2 Cache

L3 Cache

Main Memory

Hard Drive or Flash

Capacity (KB, MB, GB, TB)

Copyright © 2012, Elsevier Inc. All rights reserved.

5

PROCESSOR

I-Cache D-Cache L1:

U-Cache L2:

U-Cache L3:

Main Memory Main:

I-Cache  instruction cache

D-Cache data cache

U-Cache  unified cache

Different functional units fetch

information from I-cache and

D-cache: decoder and

scheduler operate with I-

cache, but integer execution

unit and floating-point unit

communicate with D-cache.

Copyright © 2012, Elsevier Inc. All rights reserved.

6

Memory hierarchy

 My Power Book

 Intel core i7

 2 cores

 2.8 GHz

 L2 cache:

 256 KB/core

 L3 4MB

 Main memory 16 GB

 two DDR3 8 MB

 at 1.6 GHz

 Disk 500 GB

Copyright © 2012, Elsevier Inc. All rights reserved.

In
tro

d
u
c
tio

n

7

Processor/memory cost-performance gap
In

tro
d
u
c
tio

n

Copyright © 2012, Elsevier Inc. All rights reserved.

8

Memory hierarchy design

 Memory hierarchy design becomes more crucial with recent
multi-core processors

 Aggregate peak bandwidth grows with # cores:
 Intel Core i7 can generate two references per core per clock

 Four cores and 3.2 GHz clock

 12.8 (4 cores x 3.2 GHz) billion 128-bit instruction references +

 25.6 (2 x 4 cores x 3.2 GHz) billion 64-bit data references/second

 = 409.6 GB/s!

 DRAM bandwidth is only 6% of this (25 GB/s)

 Requires:
 Multi-port, pipelined caches

 Two levels of cache per core

 Shared third-level cache on chip

In
tro

d
u
c
tio

n

Copyright © 2012, Elsevier Inc. All rights reserved.

9

Performance and power

 High-end microprocessors have >10 MB on-chip cache

 The cache consumes a large amount of area and power
budget

In
tro

d
u
c
tio

n

Copyright © 2012, Elsevier Inc. All rights reserved.

10

Memory hierarchy basics

 When a word is not found in the cache, a miss occurs.

 In case of a miss fetch word from lower level in hierarchy
 higher latency reference

 lower level may be:
 another cache

 the main memory

 fetch the entire block consisting of several words
 Takes advantage of spatial locality

 place block into cache in any location within its set,
determined by address
 block address MOD number of sets

In
tro

d
u
c
tio

n

Copyright © 2012, Elsevier Inc. All rights reserved.

11

Placement problem

Main

Memory Cache

Memory

Copyright © 2012, Elsevier Inc. All rights reserved.

12

Placement policies

 Main memory has a much larger capacity than cache.

 Mapping between main and cache memories.

 Where to put a block in cache

Copyright © 2012, Elsevier Inc. All rights reserved.

13

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Memory

B
lo

c
k
 n

u
m

b
e

r

0

1

2

3

4

5

6

7

Fully associative cache

A block can be placed in any

location in cache.

Cache

14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Memory

B
lo

c
k
 n

u
m

b
e

r

0

1

2

3

4

5

6

7

Direct mapped cache

(Block address) MOD (Number of blocks in cache)

12 MOD 8 = 4

A block can be placed ONLY

in a single location in cache.

Cache

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Memory

B
lo

c
k
 n

u
m

b
e

r

0

1

2

3

4

5

6

7

Set associative cache

(Block address) MOD (Number of sets in cache)

12 MOD 4 = 0

0

1

2

3

Set no.

B
lo

c
k
 n

u
m

b
e
r

A block can be placed in one

of n locations in n-way set

associative cache.

Cache

16

Memory hierarchy basics

 n sets => n-way set associative
 Direct-mapped cache => one block per set

 Fully associative => one set

 Writing to cache: two strategies
 Write-through

 Immediately update lower levels of hierarchy

 Write-back
 Update lower levels of hierarchy only when an updated block

in cache is replaced

 Both strategies use write buffer to make writes
asynchronous

In
tro

d
u
c
tio

n

17

Dirty bit

 Two types of caches

 Instruction cache : I-cache

 Data cache: D-cache

 Dirt bit indicates if the cache block has been written to or

modified.

 No need for dirty bit for

 I-caches

 write through D-cache.

 Dirty bit needed for

 write back D-caches.

18

Write back

C P U

Main memory

Cache D

Copyright © 2012, Elsevier Inc. All rights reserved.

19

Write through cache

C P U

Main memory

Cache

Copyright © 2012, Elsevier Inc. All rights reserved.

20

Cache organization

 A cache row has:
 Tag  contains part of the address of data fetched from main memory

 Data bloc  contains data fetched from main memory

 Flags: valid, dirty

 An memory address is split (MSB to LSB) into:
 tag  contains the most significant bits of the address.

 index  gives the cache row the data has been put in.

 block offset  gives the desired data within the stored data block within the

cache row.

21

Cache organization

:
:

<1> <21> <256>
Valid Tag Data

CPU
address

Data

=
MUX

Tag Index blk

<21> <6> <5>

Copyright © 2012, Elsevier Inc. All rights reserved.

22

Cache misses

 Miss rate  Fraction of cache access that result in a
miss

 Causes of misses

 Compulsory  first reference to a block

 Capacity  blocks discarded and later retrieved

 Conflict  the program makes repeated references to multiple
addresses from different blocks that map to the same location in
the cache

In
tro

d
u
c
tio

n

Copyright © 2012, Elsevier Inc. All rights reserved.

23

 Speculative and multithreaded processors may execute

other instructions during a miss

 Reduced performance impact of misses

Cache misses
In

tro
d
u
c
tio

n

Copyright © 2012, Elsevier Inc. All rights reserved.

24

Basic cache optimizations techniques

 Larger block size
 Reduces compulsory misses

 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses

 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Give priority to read misses over writes
 Reduces miss penalty

 Avoid address translation in cache indexing
 Reduces hit time

In
tro

d
u
c
tio

n

Copyright © 2012, Elsevier Inc. All rights reserved.

25

Advanced optimizations

 Metrics:
 Reducing the hit time

 Increase cache bandwidth

 Reducing miss penalty

 Reducing miss rate

 Reducing miss penalty or miss rate via parallelism

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

26

Ten advanced optimizations

 Small and simple first level caches
 Critical timing path:

 addressing tag memory, then

 comparing tags, then

 selecting correct set

 Direct-mapped caches can overlap tag compare and
transmission of data

 Lower associativity reduces power because fewer
cache lines are accessed

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

27

1) Fast hit times via small and simple L1 caches

 Critical timing path:

 addressing tag memory, then

 comparing tags, then

 selecting correct set

 Direct-mapped caches can overlap tag compare and
transmission of data

 Lower associativity reduces power because fewer cache
lines are accessed

Copyright © 2012, Elsevier Inc. All rights reserved.

28

L1 size and associativity

Access time vs. size and associativity

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

29

L1 size and associativity

Energy per read vs. size and associativity

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

30

2) Fast hit times via way prediction

 How to combine fast hit time of Direct Mapped and have the lower

conflict misses of 2-way SA cache?

 Way prediction: keep extra bits in cache to predict the “way,” or block

within the set, of next cache access.

 Multiplexor is set early to select desired block, only 1 tag comparison

performed that clock cycle in parallel with reading the cache data

 Miss  1st check other blocks for matches in next clock cycle

 Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

 Prediction accuracy

 > 90% for two-way

 > 80% for four-way

 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s. Used on ARM Cortex-A8

 Extend to predict block as well.

 “Way selection”  increases mis-prediction penalty

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

31

3) Increase cache bandwidth by pipelining

 Pipelining improves bandwidth, but higher latency

 More clock cycles between the issue of the load and the
use of data

 Examples:
 Pentium: 1 cycle

 Pentium Pro – Pentium III: 2 cycles

 Pentium 4 – Core i7: 4 cycles

 Increases branch mis-prediction penalty

 Makes it easier to increase associativity

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

32

4. Increase cache bandwidth: non-blocking caches

 Pipelined processors allow out-of-order execution. The
processor should not stall during a data cache miss.

 Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss
 Requires additional bits on registers or out-of-order execution

 Requires multi-bank memories

 “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

 “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple misses
 Significantly increases the complexity of the cache controller as

there can be multiple outstanding memory accesses

 Requires multiple memory banks (otherwise cannot support)

 Pentium Pro allows 4 outstanding memory misses

33

34

Nonblocking caches

 Like pipelining the
memory system  allow
hits before previous
misses complete
 “Hit under miss”

 “Hit under multiple miss”

 Important for hiding
memory latency

 L2 must support this

 In general, processors
can hide L1 miss penalty
but not L2 miss penalty

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

35
http://csg.csail.mit.edu/6.S078

36

5) Independent banks; interleaving

 Organize cache as independent banks to support
simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2

 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

37

6) Early restart and critical word first

 Reduce miss penalty.

 Don’t wait for full block before restarting CPU

 Early restart  As soon as the requested word of the

block arrives, send it to the CPU and let the CPU continue

execution

 Spatial locality  tend to want next sequential word, so not clear

size of benefit of just early restart

 Critical Word First Request the missed word first from

memory and send it to the CPU as soon as it arrives; let

the CPU continue execution while filling the rest of the

words in the block

 Long blocks more popular today  Critical Word 1st Widely used

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

block

38

7. Merging write buffer to reduce miss penalty

 Write buffer to allow processor to continue while waiting

to write to memory

 If buffer contains modified blocks, the addresses can be

checked to see if address of new data matches the

address of a valid write buffer entry

 If so, new data are combined with that entry

 Increases block size of write for write-through cache of

writes to sequential words, bytes since multiword writes

more efficient to memory

 The Sun T1 (Niagara) processor, among many others,

uses write merging

39

Merging write buffer

 When storing to a block that is already pending in the
write buffer, update write buffer

 Reduces stalls due to full write buffer

 Do not apply to I/O addresses

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

No write

buffering

Write buffering

Copyright © 2012, Elsevier Inc. All rights reserved.

40

8. Reduce misses by compiler optimizations

 McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

 Instructions
 Reorder procedures in memory so as to reduce conflict misses

 Profiling to look at conflicts(using tools they developed)

 Data
 Merging Arrays: improve spatial locality by single array of

compound elements vs. 2 arrays

 Loop Interchange: change nesting of loops to access data in
order stored in memory

 Loop Fusion: Combine 2 independent loops that have same
looping and some variables overlap

 Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows

41

Compiler optimizations

 Loop Interchange
 Swap nested loops to access memory in

sequential order

 Blocking
 Instead of accessing entire rows or columns,

subdivide matrices into blocks

 Requires more memory accesses but improves
locality of accesses

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

42

Merging arrays example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of structures */

struct merge {

 int val;

 int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key improve

spatial locality

43

Loop interchange example

/* Before */

for (k = 0; k < 100; k = k+1)

 for (j = 0; j < 100; j = j+1)

 for (i = 0; i < 5000; i = i+1)

 x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

 for (i = 0; i < 5000; i = i+1)

 for (j = 0; j < 100; j = j+1)

 x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through

memory every 100 words; improved spatial

locality

44

Loop fusion example
/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 { a[i][j] = 1/b[i][j] * c[i][j];

 d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;

improve spatial locality

45

Blocking example
/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 {r = 0;

 for (k = 0; k < N; k = k+1){

 r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

 };

 Two Inner Loops:

 Read all NxN elements of z[]

 Read N elements of 1 row of y[] repeatedly

 Write N elements of 1 row of x[]

 Capacity Misses a function of N & Cache Size:

 2N3 + N2 => (assuming no conflict; otherwise …)

 Idea: compute on BxB submatrix that fits

46

Blocking example

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1)

 {r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

 r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

 };

 B called Blocking Factor

 Capacity Misses from 2N3 + N2 to 2N3/B +N2

 Conflict Misses Too?

47

Snapshot of arrays x,y,z when N=6 and i =1

 The age of access to the array elements is indicated by shade.

White  not yet touched

 Light  older access

 Dark  new access

In the “before” algorithm the elements of y and z are read repeatedly to

calculate x. Compare with the next slide which shows the “after” access

patterns. Indexes, I, j, and k are shown along the rows and columns.

48

49

Reducing conflict misses by blocking

 Conflict misses in caches not FA vs. Blocking size
 Lam et al [1991] a blocking factor of 24 had a fifth the misses

vs. 48 despite both fit in cache

Blocking Factor

M
is

s
 R

a
te

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct M apped Cache

50

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky

(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged

arrays

loop

interchange

loop fusion blocking

Summary of compiler optimizations to reduce

cache misses (by hand)

51

9) Hardware prefetching

 Fetch two blocks on miss (include next
sequential block)

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Pentium 4 Pre-fetching

Copyright © 2012, Elsevier Inc. All rights reserved.

52

10) Compiler prefetching

 Insert prefetch instructions before data is
needed

 Non-faulting: prefetch doesn’t cause
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software
pipelining

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

53

Reducing misses by software prefetching

 Data Prefetch
 Load data into register (HP PA-RISC loads)

 Cache Prefetch: load into cache
(MIPS IV, PowerPC, SPARC v. 9)

 Special prefetching instructions cannot cause
faults; a form of speculative execution

 Issuing Prefetch Instructions takes time
 Is cost of prefetch issues < savings in reduced

misses?

 Higher superscalar reduces difficulty of issue
bandwidth

54

Summary
A

d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Copyright © 2012, Elsevier Inc. All rights reserved.

55

Main memory background

 Performance of Main Memory:
 Latency: Cache Miss Penalty

 Access Time: time between request and word arrives

 Cycle Time: time between requests

 Bandwidth: I/O & Large Block Miss Penalty (L2)

 Main Memory is DRAM: Dynamic Random Access Memory
 Dynamic since needs to be refreshed periodically (8 ms, 1% time)

 Addresses divided into 2 halves (Memory as a 2D matrix):
 RAS or Row Access Strobe

 CAS or Column Access Strobe

 Cache uses SRAM: Static Random Access Memory
 No refresh (6 transistors/bit vs. 1 transistor

Size: DRAM/SRAM 4-8,
Cost/Cycle time: SRAM/DRAM 8-16

56

Memory technology

 SRAM
 Requires low power to retain bit

 Requires 6 transistors/bit

 No need to refresh  access time close to cycle time.

 DRAM
 Must be re-written after being read

 Must also be periodically refreshed

 Every ~ 8 ms

 Each row can be refreshed simultaneously

 Access time longer than cycle time.

 One transistor/bit

 Address lines are multiplexed:

 Upper half of address: row access strobe (RAS)

 Lower half of address: column access strobe (CAS)

 DIMM - dual in-line memory module comprises a series of
dynamic random-access memory integrated circuits

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y

Copyright © 2012, Elsevier Inc. All rights reserved.

57

Memory technology

 Amdahl:
 Memory capacity should grow linearly with processor speed

 Unfortunately, memory capacity and speed has not kept pace with
processors.

 Some optimizations:
 Multiple accesses to same row

 Synchronous DRAM. Originally DRAM had an asynchronous
interface with the memory controller, so ever access needed to
synchronize the two.

 Added clock to DRAM interface

 Burst mode with critical word first – support 8 or 16 bits transfers for
each address.

 Wider interfaces  from 4 bit parallel transfer to 16-bit busses for
DDR2 and DDR3.

 Double data rate (DDR)  to increase bandwidth transfer data both
on the raising and the falling edge of the DRAM clock signal.

 Multiple banks on each DRAM device

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y

Copyright © 2012, Elsevier Inc. All rights reserved.

58

DRAM organization

 To reduce the cost of packing DRAM we have to reduce the number of

address lines – one half of the address is sent during the row access

and is sent during the column access strobe (CAS)

Copyright © 2012, Elsevier Inc. All rights reserved.

59

Memory optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)

 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V

 800 MHz

 DDR4
 1-1.2 V

 1600 MHz

 GDDR5 is graphics memory based on DDR3

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y

Copyright © 2012, Elsevier Inc. All rights reserved.

60

DDR2 and DDR3

 DDR2 SDRAM  double data rate synchronous DRAM.

 DDR2 memory operating at the same external data bus clock rate as

DDR provides the same bandwidth but with higher latency; at twice

the external data bus clock rate it may provide twice the bandwidth

with the same latency.

 With data being transferred 64 bits at a time, DDR2 SDRAM gives a

transfer rate of: (memory clock rate) × 2 (for bus clock multiplier) × 2

(for dual rate) × 64 (number of bits transferred) / 8; e.g., at 100 MHz,

DDR2 has a maximum transfer rate of 3200 MB/s.

 DDR3 SDRAM four times the bus clock

 Transfer rate: (memory clock rate) × 4 (for bus clock multiplier) × 2 (for

dual rate) × 64 (number of bits transferred) / 8 (number of bits/byte).

E.g., at 100 MHz, the maximum transfer rate of 6400 MB/s.

Copyright © 2012, Elsevier Inc. All rights reserved.

61

Memory optimizations
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y

Copyright © 2012, Elsevier Inc. All rights reserved.

62 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory optimizations
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y

63

Memory optimizations

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)

 Higher clock rate
 Possible because they are attached via soldering instead of

socketted DIMM modules

 Reducing power in SDRAMs:
 Lower voltage

 Low power mode (ignores clock, continues to
refresh)

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y

Copyright © 2012, Elsevier Inc. All rights reserved.

64

Memory power consumption
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y

Copyright © 2012, Elsevier Inc. All rights reserved.

65

Quest for DRAM Performance

1. Fast Page mode
 Add timing signals that allow repeated accesses to row

buffer without another row access time
 Such a buffer comes naturally, as each array will buffer

1024 to 2048 bits for each access

2. Synchronous DRAM (SDRAM)
 Add a clock signal to DRAM interface, so that the repeated

transfers would not bear overhead to synchronize with
DRAM controller

3. Double Data Rate (DDR SDRAM)
 Transfer data on both the rising edge and falling edge of

the DRAM clock signal  doubling the peak data rate
 DDR2 lowers power by dropping the voltage from 2.5 to

1.8 volts + offers higher clock rates: up to 400 MHz
 DDR3 drops to 1.5 volts + higher clock rates: up to 800

MHz
 Improved Bandwidth, not Latency

66

DRAM name based on Peak Chip Transfers / Sec

DIMM name based on Peak DIMM MBytes / Sec

Stan-

dard

Clock Rate

(MHz)

M transfers

/ second

DRAM

Name

Mbytes/s/

DIMM

DIMM

Name

DDR 133 266 DDR266 2128 PC2100

DDR 150 300 DDR300 2400 PC2400

DDR 200 400 DDR400 3200 PC3200

DDR2 266 533 DDR2-533 4264 PC4300

DDR2 333 667 DDR2-667 5336 PC5300

DDR2 400 800 DDR2-800 6400 PC6400

DDR3 533 1066 DDR3-1066 8528 PC8500

DDR3 666 1333 DDR3-1333 10664 PC10700

DDR3 800 1600 DDR3-1600 12800 PC12800

x 2 x 8

F
a
s
te

s
t
fo

r
s
a
le

 4
/0

6
 (

$
1
2
5
/G

B
)

67

The need for error correction!

 Motivation:
 Failures/time proportional to number of bits!
 As DRAM cells shrink, more vulnerable

 Went through period in which failure rate was low
enough without error correction that people didn’t do
correction
 DRAM banks too large now
 Servers always corrected memory systems

 Basic idea: add redundancy through parity bits
 Common configuration: Random error correction

 SEC-DED (single error correct, double error detect)
 One example: 64 data bits + 8 parity bits (11% overhead)

 Really want to handle failures of physical components as well
 Organization is multiple DRAMs/DIMM, multiple DIMMs
 Want to recover from failed DRAM and failed DIMM!
 “Chip kill” handle failures width of single DRAM chip

68

AMD Opteron memory hierarchy

 12-stage integer pipeline yields a maximum clock rate of 2.8 GHz

and fastest memory PC3200 DDR SDRAM

 48-bit virtual and 40-bit physical addresses

 I and D cache: 64 KB, 2-way set associative, 64-B block, LRU

 L2 cache: 1 MB, 16-way, 64-B block, pseudo LRU

 Data and L2 caches use write back, write allocate

 L1 caches are virtually indexed and physically tagged

 L1 I TLB and L1 D TLB: fully associative, 40 entries

 32 entries for 4 KB pages and 8 for 2 MB or 4 MB pages

 L2 I TLB and L1 D TLB: 4-way, 512 entities of 4 KB pages

 Memory controller allows up to 10 cache misses

 8 from D cache and 2 from I cache

69

Opteron memory hierarchy performance

 For SPEC2000

 I cache misses per instruction is 0.01% to 0.09%

 D cache misses per instruction are 1.34% to 1.43%

 L2 cache misses per instruction are 0.23% to 0.36%

 Commercial benchmark (“TPC-C-like”)

 I cache misses per instruction is 1.83% (100X!)

 D cache misses per instruction are 1.39% ( same)

 L2 cache misses per instruction are 0.62% (2X to
3X)

 How does it compare to ideal CPI of 0.33?

70

CPI breakdown for integer programs

-

0.50

1.00

1.50

2.00

2.50

3.00

p
e

rl
b

m
k

c
ra

ft
y

e
o

n

g
z
ip

g
a

p

v
o

rt
e

x

b
z
ip

2

g
c
c

p
a

rs
e

r

v
p

r

tw
o

lf

T
P

C
-C

C
P

I

Min Pipeline Stall

Max Memory CPI

Base CPI

• CPI above base attributable to memory  50%

• L2 cache misses  25% overall (50% memory CPI)
– Assumes misses are not overlapped with the execution pipeline or with

each other, so the pipeline stall portion is a lower bound

71

CPI breakdown for floating point programs

• CPI above base attributable to memory  60%

• L2 cache misses  40% overall (70% memory CPI)
– Assumes misses are not overlapped with the execution pipeline or with

each other, so the pipeline stall portion is a lower bound

-

0.50

1.00

1.50

2.00

2.50

3.00

si
xt

ra
ck

m
es

a

w
up

w
ise

m
gr

id

app
lu

fa
ce

re
c

gal
gel

aps
i

am
m

p

fm
a3d

lu
ca

s

sw
im

equ
ak

e art

C
P

I

Min Pipeline Stall

Max Memory CPI

Base CPI

72

Pentium 4 versus Opteron memory hierarchy

CPU Pentium 4 (3.2 GHz*) Opteron (2.8 GHz*)

Instruction

Cache

Trace Cache

(8K micro-ops)

2-way associative, 64

KB, 64B block

Data Cache 8-way associative, 16 KB,

64B block, inclusive in L2

2-way associative, 64

KB, 64B block,

exclusive to L2

L2 cache 8-way associative,

2 MB, 128B block

16-way associative, 1

MB, 64B block

Prefetch 8 streams to L2 1 stream to L2

Memory 200 MHz x 64 bits 200 MHz x 128 bits
*Clock rate for this comparison in 2005; faster versions existed

72

73

Misses Per Instruction: Pentium 4 vs. Opteron

-

1

2

3

4

5

6

7

g
z
ip v
p
r

g
c
c

m
cf

c
ra

ft
y

w
u

p
w

is
e

s
w

im

m
g
ri
d

a
p

p
lu

m
e
s
a

R
a
ti
o
 o

f
M

P
I:

 P
e
n
ti
u
m

 4
/O

p
te

ro
n

D cache: P4/Opteron

L2 cache: P4/Opteron

SPECint2000 SPECfp2000

Opteron better

Pentium better

• D cache miss: P4 is 2.3X to 3.4X vs. Opteron

• L2 cache miss: P4 is 0.5X to 1.5X vs. Opteron

• Note: Same ISA, but not same instruction count

2.3X

3.4X

0.5X

1.5X

74

Intel p7

 X86-64 ISA.

 out of order execution

 4 cores; each can execute up to 4 instructions per clock cycle

 16 stage pipeline

 fastest clock rate: 3.3 GHz

 can support up to 3 memory channels each consisting of

separate sets of DIMMS

 48-bit virtual addresses 

 maximum address spaces size= 256 TB.

 36-bit physical addresses 

 maximum amount of physical memory = 64 GB

Copyright © 2012, Elsevier Inc. All rights reserved.

75

I7 caches
L1 L2 L3

Size I: 32KB +

D: 32 KB

256 KB 2 MB/core

Associativity I: 4-way

D: 8-way

8-way 16-way

Access latency 4 cycled,

pipelined

10 cycles 35 cycles

Replacement

scheme

Pseudo-LRU Pseudo-LRU Pseudo-LRU with an

ordered selection algorithm

Copyright © 2012, Elsevier Inc. All rights reserved.

All three caches use write back.

They are non-blocking.

Block size 64 bytes

L1 and L2 caches are separate for each core; L3 is shared

76

Flash memory

 Type of EEPROM

 Must be erased (in blocks) before being
overwritten

 Non volatile

 Limited number of write cycles

 Cheaper than SDRAM, more expensive than
disk

 Slower than SRAM, faster than disk

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y

Copyright © 2012, Elsevier Inc. All rights reserved.

77

Memory dependability

 Memory is susceptible to cosmic rays

 Soft errors: dynamic errors
 Detected and fixed by error correcting codes

(ECC)

 Hard errors: permanent errors
 Use sparse rows to replace defective rows

 Chipkill: a RAID-like error recovery technique

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y

Copyright © 2012, Elsevier Inc. All rights reserved.

78

Virtual memory

 Each process has its own address space. In a 32-bit
architecture each process can address up to 232 bytes (4
GB); in a 64–bit architecture a process can address up to
264 bytes.

 Protection via virtual memory

 Keeps processes in their own memory space

 The role of architecture:

 Provide user mode and supervisor mode

 Protect certain aspects of CPU state

 Provide mechanisms for switching between user mode
and supervisor mode

 Provide mechanisms to limit memory accesses

 Provide TLB to translate addresses

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

Copyright © 2012, Elsevier Inc. All rights reserved.

79

Dynamic address translation

 Virtual address  address generated by compiler

 Physical address  address in physical memory

 Dynamic address translation mapping a virtual address to a physical

address.

 Virtual memory organization: paging and segmentation.

 Page  a set of consecutive virtual addresses.

 Page size  typically 2 – 4 KB

 All pages of a process are stored on the secondary storage (disk) in a

region called “swap area.” The size of “swap area” on the disk= the

address space size X the max number of processes.

 Each process has its own “page table.” A page table entry shows

 The “page frame” in physical memory where the page resides if the

“valid bit” is ON.

 The need to bring in the page if the “valid bit” is OFF and then a “page

fault” occurs, the page must be brought in from the secondary

storage.

Copyright © 2012, Elsevier Inc. All rights reserved.

80

The role of TLB (translation look-aside buffer

Copyright © 2012, Elsevier Inc. All rights reserved.

81

The ARM Cortex A8

 Supports ARMv7 instruction set.

 Can issue two instructions per clock cycle; clock cycle up to 1 GHz.

 Two-level cache hierarchy

 A pair of L1- instruction (I) and data (D).

 Each has Capacity =32 KB with block size=64 byte

 Four-way set associative

 Virtually indexed and physically tagged

 L2 cache.

 Capacity= 1 MB;

 Bloc size = 64 byte;

 Eight=way set associative.

 Physically indexed and tagged.

Copyright © 2012, Elsevier Inc. All rights reserved.

82 Copyright © 2012, Elsevier Inc. All rights reserved.

83 Copyright © 2012, Elsevier Inc. All rights reserved.

84

Virtual memory policies

1. Bring in policies

1. On demand  bring the page to the main memory from the disk only when it is

needed. E.g., demand paging

2. Anticipatory. E.g. pre-paging

2. Replacement policies

 FIFO  First in first out

 OPTIMAL  what a clairvoyant multi-level memory manager would do.

Alternatively, construct the string of references and use it for a second

execution of the program (with the same data as input).

 LRU – Least Recently Used  replace the page that has not been referenced

for the longest time.

 MSU – Most Recently Used  replace the page that was referenced most

recently

3. How to evalute a policy  use a string of references show what page is

needed at each moment.

4. The capacity of the main memory is expressed as the number of frames.

dcm

85

Page replacement policies; Belady’s anomaly

 In the following examples we use a given string of references to illustrate

several page replacement policies. We have five pages, 0, 1, 2, 3, and 4.

 The main memory has a capacity of

 3 frames, labeled 0,1,2

 4 frames, labeled 0, 1, 2, 3

 Once a frame has the “dirty bit” on it means that the page residing in that

frame was modifies and must be written back to the secondary device, the

disk before being replaced.

 The capacity of the primary device is important. One expects that increasing

the capacity, in our case the number of frames in RAM leads to a higher hit

ratio. That is not always the case as our examples will show. This is the

Belady’s anomaly.

 Note: different results are obtained with a different string of references!!

dcm

86

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of

page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Frame 1 - 0 0 0 3 3 3 4 4 4 4 4

Frame 2 - - 1 1 1 0 0 0 0 0 2 2

Frame 3 - - - 2 2 2 1 1 1 1 1 3

Page OUT - - - 0 1 2 3 - - 0 1 -

Page IN 0 1 2 3 0 1 4 - - 2 3 - 9

Frame 1 - 0 0 0 0 0 0 4 4 4 4 3

Frame 2 - - 1 1 1 1 1 1 0 0 0 0

Frame 3 - - - 2 2 2 2 2 2 1 1 1

Frame 4 - - - - 3 3 3 3 3 3 2 2

Page OUT - - - - - - 0 1 2 3 4 0

Page IN 0 1 2 3 - - 4 0 1 2 3 4 10

FIFO Page replacement algorithm

dcm

87

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of

page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Frame 1 - 0 0 0 0 0 0 0 0 0 2 3

Frame 2 - - 1 1 1 1 1 1 1 1 1 1

Frame 3 - - - 2 3 3 3 4 4 4 4 4

Page OUT - - - 2 - - 3 - - 0 2 -

Page IN 0 1 2 3 - - 4 - - 2 3 - 7

Frame 1 - 0 0 0 0 0 0 0 0 0 0 3

Frame 2 - - 1 1 1 1 1 1 1 1 1 1

Frame 3 - - - 2 2 2 2 2 2 2 2 2

Frame 4 - - - - 3 3 3 4 4 4 4 4

Page OUT - - - - - - 3 - - - 0 -

Page IN 0 1 2 3 - - 4 - - - 3 - 6

OPTIMAL page replacement algorithm

dcm

88

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of

page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Frame 1 - 0 0 0 0 0 0 0 0 0 0 3

Frame 2 - - 1 1 2 1 1 1 1 1 1 1

Frame 3 - - - 2 3 3 3 4 4 4 2 2

Page OUT - - - 1 - 2 3 - - 4 0 1

Page IN 0 1 2 3 - 1 4 - - 2 3 4 9

Frame 1 - 0 0 0 0 0 0 0 0 0 0 0

Frame 2 - - 1 1 1 1 1 1 1 1 1 1

Frame 3 - - - 2 2 2 2 4 2 2 2 2

Frame 4 - - - - 3 3 3 3 4 4 4 3

Page OUT - - - - - - 2 - - - 4 0

Page IN 0 1 2 3 - - 4 - - - 3 4 7

LRU page replacement algorithm

dcm

89

LRU, OPTIMAL, MRU

 LRU looks only at history

 OPTIMAL “knows” not only the history but also the future.

 In some particular cases Most Recently Used Algorithm performs better than LRU.

 Example: primary device with 4 cells.

 Reference string 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

 LRU F F F F F F F F F F F F F F F

 MRU F F F F - - - - F - - - F - -

dcm

90

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of

page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Frame 1 - 0 0 0 0 0 0 0 0 0 2 3

Frame 2 - - 1 1 1 1 1 1 1 1 1 1

Frame 3 - - - 2 3 3 3 4 4 4 4 4

Page OUT - - - 2 - - 3 - - 0 2 -

Page IN 0 1 2 3 - - 4 - - 2 3 - 7

Frame 1 - 0 0 0 0 0 0 0 0 0 0 3

Frame 2 - - 1 1 1 1 1 1 1 1 1 1

Frame 3 - - - 2 2 2 2 2 2 2 2 2

Frame 4 - - - - 3 3 3 4 4 4 4 4

Page OUT - - - - - - 3 - - - 0 -

Page IN 0 1 2 3 - - 4 - - - 3 - 6

OPTIMAL replacement policy keeps in the 3 frames the same pages as it does

in case of the 4 frame primary memory. There are 5 pages, 0, 1, 2, 3, 4

dcm

91

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of

page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Frame 1 - 0 0 0 0 0 0 0 0 0 0 3

Frame 2 - - 1 1 2 1 1 1 1 1 1 1

Frame 3 - - - 2 3 3 3 4 4 4 2 2

Page OUT - - - 2 - - 3 - - 0 2 -

Page IN 0 1 2 3 - 1 4 - - 2 3 4 9

Frame 1 - 0 0 0 0 0 0 0 0 0 0 0

Frame 2 - - 1 1 1 1 1 1 1 1 1 1

Frame 3 - - - 2 2 2 2 4 2 2 2 2

Frame 4 - - - - 3 3 3 3 4 4 4 3

Page OUT - - - - - - 2 - - - 4 0

Page IN 0 1 2 3 - - 4 - - - 3 4 7

LRU replacement policy keeps in the 3-frame primary memory the same

pages as it does in case of the 4-frame primary memory.

dcm

92

Time intervals 1 2 3 4 5 6 7 8 9 10 11 12 Total number of

page faults

Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Frame 1 - 0 0 0 3 3 3 4 4 4 4 4

Frame 2 - - 1 1 1 0 0 0 0 0 2 2

Frame 3 - - - 2 2 2 1 1 1 1 1 3

Page OUT - - - 0 1 2 3 - - 0 1 -

Page IN 0 1 2 3 0 1 4 - - 2 3 - 9

Frame 1 - 0 0 0 0 0 0 4 4 4 4 3

Frame 2 - - 1 1 1 1 1 1 0 0 0 0

Frame 3 - - - 2 2 2 2 2 2 1 1 1

Frame 4 - - - - 3 3 3 3 3 3 2 2

Page OUT - - - - - - 0 1 2 3 4 0

Page IN 0 1 2 3 - - 4 0 1 2 3 4 10

FIFO replacement policy does not keep in the 3-frame primary memory

the same pages as it does in case of the 4-block primary memory

dcm

93

How to avoid Belady’s anomaly

 The OPTIMAL and the LRU algorithms have the subset property, a primary

device with a smaller capacity hold a subset of the pages a primary device

with a larger capacity could hold.

 The subset property creates a total ordering. If the primary system has 1

blocks and contains page A a system with two block add page B, and a

system with three blocks will add page C. Thus we have a total ordering

 AB  C or (A,B,C)

 Replacement algorithms that have the subset property are called “stack”

algorithms.

 If we use stack replacement algorithms a device with a larger capacity can

never have more page faults than the one with a smaller capacity.

 m the pages held by a primary device with smaller capacity

 n  the pages held by a primary device with larger capacity

 m is a subset of n

dcm

94

Simulation analysis of page replacement algorithms

 Given a reference string we can carry out the simulation for all possible cases

when the capacity of the primary storage device varies from 1 to n with a

single pass.

 At each new reference to some page move to the top of the ordering and the

pages that were above it either move down or stay in the same place as

dictated by the replacement policy. We record whether this movement

correspond to paging out, movement to the secondary storage.

dcm

95

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Size 1 in/out 0/- 1/0 2/1 3/2 0/3 1/0 4/1 0/4 1/0 2/1 3/2 4/3 12

Size 2 in/out 0/- 1/- 2/0 3/1 0/2 1/3 4/0 0/1 1/4 2/0 3/1 4/2 12

Size 3 in/out 0/- 1/- 2/- 3/0 0/1 1/2 4/3 -/- -/- 2/4 3/0 4/1 10

Size 4 in/out 0/- 1/- 2/- 3/- -/- -/- 4/2 -/- -/- 2/3 3/4 4/0 8

Size 5 in/out 0/- 1/- 2/- 3/- -/- -/- 4/- -/- -/- -/- -/- -/- 5

Simulation of LRU page replacement algorithm

Stack contents

after refrence
0

-

-

-

-

1

0

-

-

-

2

1

0

-

-

3

2

1

0

-

0

3

2

1

-

1

0

3

2

-

4

1

0

3

2

0

4

1

3

2

1

0

4

3

2

2

1

0

4

5

3

2

1

0

4

4

3

2

1

0

Total number of

page faults

dcm

96

Time 1 2 3 4 5 6 7 8 9 10 11 12

Reference string 0 1 2 3 0 1 4 0 1 2 3 4

Size 1 victim - 0 1 2 3 0 1 4 0 1 2 3 11

Size 2 victim - - 1 2 - 3 1 - 1 2 3 4 10

Size 3 victim - - - 2 - - 4 - - 2 3 - 7

Size 4 victim - - - - - - 4 - - 2 - - 6

Size 5 victim - - - - - - - - - - - - 5

Simulation of OPTIMUM

Stack contents

after reference
0

-

-

-

-

1

0

-

-

-

2

0

1

-

-

3

0

1

2

-

0

3

1

2

-

1

0

3

2

-

4

0

1

3

2

0

4

1

3

2

1

0

4

3

2

2

0

4

3

1

3

0

4

2

1

4

0

3

2

1

Total number

of page faults

dcm

97

Clock replacement algorithm

 Approximates LRU with a minimum

 Additional hardware: one reference bit for each page

 Overhead

 Algorithm activated :

 when a new page must be brought in move the pointer of a virtual clock

in clockwise direction

 if the arm points to a block with reference bit TRUE

 Set it FALSE

 Move to the next block

 if the arm points to a block with reference bit FALSE

 The page in that block could be removed (has not been referenced for a

while)

 Write it back to the secondary storage if the “dirty” bit is on (if the page has

been modified.

dcm

98 dcm

99

Virtual machines

 Supports isolation and security

 Sharing a computer among many unrelated users

 Enabled by raw speed of processors, making the
overhead more acceptable

 Allows different ISAs and operating systems to be
presented to user programs
 “System Virtual Machines”

 SVM software is called “virtual machine monitor” or
“hypervisor”

 Individual virtual machines run under the monitor are called
“guest VMs”

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

Copyright © 2012, Elsevier Inc. All rights reserved.

100

Impact of VMs on virtual memory

 Each guest OS maintains its own set of page
tables
 VMM adds a level of memory between physical

and virtual memory called “real memory”

 VMM maintains shadow page table that maps
guest virtual addresses to physical addresses
 Requires VMM to detect guest’s changes to its own page

table

 Occurs naturally if accessing the page table pointer is a
privileged operation

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

Copyright © 2012, Elsevier Inc. All rights reserved.

