
	The	ABCs	of	Programming

A	Java	program	is	made	up	of	classes	and	objects,	which,	in	turn,	are	made	up	of	methods
and	variables.	Methods	are	made	up	of	statements	and	expressions,	which	are	made	up	of
operators.

At	this	point,	you	might	be	worried	that	Java	is	like	a	set	of	Russian	nesting	matryoshka
dolls.	Each	doll	has	a	smaller	doll	inside	it,	as	intricate	and	detailed	as	its	larger
companion,	until	you	reach	the	smallest	one.

Today’s	lesson	clears	away	the	big	dolls	to	reveal	the	smallest	elements	of	Java
programming.	You	will	set	aside	classes,	objects,	and	methods	for	a	day	and	examine	the
basic	things	you	can	do	in	a	single	line	of	Java	code.

The	following	subjects	are	covered:

	Statements	and	expressions

	Variables	and	primitive	data	types

	Constants

	Comments

	Literals

	Arithmetic

	Comparisons

	Logical	operators

Statements	and	Expressions
All	the	tasks	you	want	to	accomplish	in	a	Java	program	can	be	broken	into	a	series	of
statements.	In	a	programming	language,	a	statement	is	a	simple	command	that	causes
something	to	happen.

Statements	represent	a	single	action	taken	in	a	Java	program.	Here	are	three	simple	Java
statements:

int	weight	=	225;
System.out.println(“Free	the	bound	periodicals!”);
song.duration	=	230;

Some	statements	can	convey	a	value,	such	as	when	two	numbers	are	added	or	two
variables	are	compared	to	find	out	if	they	are	equal.

A	statement	that	produces	a	value	is	called	an	expression.	The	value	can	be	stored	for	later
use	in	the	program,	used	immediately	in	another	statement,	or	disregarded.	The	value
produced	by	a	statement	is	called	its	return	value.

Some	expressions	produce	a	numeric	return	value,	as	when	two	numbers	are	added	or
multiplied.	Others	produce	a	Boolean	value—either	true	or	false—or	even	can

02: Assist. Lec. Dhafer T. Shihab

1

produce	a	Java	object.	They	are	discussed	later	today.

Although	many	Java	programs	contain	one	statement	per	line,	this	is	a	formatting	decision
that	does	not	determine	where	one	statement	ends	and	another	one	begins.	Each	statement
in	Java	is	terminated	with	a	semicolon	character	;.	A	programmer	can	put	more	than	one
statement	on	a	line	and	it	will	compile	successfully,	as	in	the	following	example:

spirit.speed	=	2;	spirit.temperature	=	-60;

To	make	your	program	more	readable	to	other	programmers	(and	yourself),	you	should
follow	the	convention	of	putting	only	one	statement	on	each	line.

Statements	in	Java	are	grouped	using	an	opening	brace	{	and	a	closing	brace	}.	A	group
of	statements	organized	between	these	characters	is	called	a	block	(or	block	statement).
You	learn	more	about	them	 “Lists,	Logic,	and	Loops.”

Variables	and	Data	Types
	A	variable	is	a	place	where	information	can	be
stored	while	a	program	is	running.	The	value	can	be	changed	at	any	point	in	the	program
—hence	the	name.

To	create	a	variable,	you	must	give	it	a	name	and	identify	the	type	of	information	it	will
store.	You	also	can	give	a	variable	an	initial	value	at	the	same	time	you	create	it.

Java	has	three	kinds	of	variables:	instance	variables,	class	variables,	and	local	variables.

Instance	variables,	

Class	variables	define	the	attributes	of	an	entire	class	of	objects	and	apply	to	all	instances
of	it.

Local	variables	are	used	inside	method	definitions	or	even	smaller	blocks	of	statements
within	a	method.	You	can	use	them	only	while	the	method	or	block	is	being	executed	by
the	Java	Virtual	Machine.	They	cease	to	exist	afterward.

Although	all	three	kinds	of	variables	are	created	in	much	the	same	way,	class	and	instance
variables	are	used	in	a	different	manner	than	local	variables.	You	learn	about	local
variables	today	and	explore	instance	and	class	variables	 	“Working	with
Objects.”

Creating	Variables
Before	you	can	use	a	variable	in	a	Java	program,	you	must	create	the	variable	by	declaring
its	name	and	the	type	of	information	it	will	store.	The	type	of	information	is	listed	first,
followed	by	the	name	of	the	variable.	The	following	all	are	examples	of	variable
declarations:

int	loanLength;
String	message;
boolean	gameOver;

In	these	examples,	the	int	type	represents	integers,	String	is	an	object	that	holds	text,

to the next lectures

2

define an object’s attributes.

later during

and	boolean	is	used	for	Boolean	true/false	values.

Local	variables	can	be	declared	at	any	place	inside	a	method,	like	any	other	Java
statement,	but	they	must	be	declared	before	they	can	be	used.

In	the	following	example,	three	variables	are	declared	at	the	top	of	a	program’s	main()
method:

public	static	void	main(String[]	arguments)	{
				int	total;
				String	reportTitle;
				boolean	active;
}

If	you	are	creating	several	variables	of	the	same	type,	you	can	declare	all	of	them	in	the
same	statement	by	separating	the	variable	names	with	commas.	The	following	statement
creates	three	String	variables	named	street,	city,	and	state:

String	street,	city,	state;

Variables	can	be	assigned	a	value	when	they	are	created	by	using	an	equal	sign	(=)
followed	by	the	value.	The	following	statements	create	new	variables	and	give	them	initial
values:

String	zipCode	=	“02134”;

int	box	=	350;
boolean	pbs	=	true;
String	name	=	“Zoom”,	city	=	“Boston”,	state	=	“MA”;

As	the	last	statement	demonstrates,	you	can	assign	values	to	multiple	variables	of	the	same
type	by	using	commas	to	separate	them.

You	must	give	values	to	local	variables	before	you	use	them	in	a	program,	or	the	program
won’t	compile	successfully.	For	this	reason,	it	is	good	practice	to	give	initial	values	to	all
local	variables.

Instance	and	class	variable	definitions	are	given	an	initial	value	depending	on	the	type	of
information	they	hold,	as	in	the	following:

	Numeric	variables:	0

	Characters:	"\0"

	Booleans:	false

	Objects:	null

Naming	Variables
Variable	names	in	Java	must	start	with	a	letter,	an	underscore	character	_,	or	a	dollar	sign
$.

Variable	names	cannot	start	with	a	number.	After	the	first	character,	variable	names	can
include	any	combination	of	letters,	numbers,	underscore	characters,	or	dollar	signs.

3

Note

In	addition,	the	Java	language	uses	the	Unicode	character	set,	which	includes
thousands	of	character	sets	to	represent	international	alphabets.	Accented	characters
and	other	symbols	can	be	used	in	variable	names	as	long	as	they	have	a	Unicode
character	number.

When	naming	a	variable	and	using	it	in	a	program,	it’s	important	to	remember	that	Java	is
case-sensitive—the	capitalization	of	letters	must	be	consistent.	Because	of	this,	a	program
can	have	a	variable	named	X	and	another	named	x	(so	Rose	is	not	rose	is	not	ROSE).

In	programs	in	this	book	and	elsewhere,	Java	variables	are	given	meaningful	names	that
include	several	joined	words.	To	make	it	easier	to	spot	the	words,	the	following	general
rules	are	used:

	The	first	letter	of	the	variable	name	is	lowercase.

	Each	successive	word	in	the	variable	name	begins	with	a	capital	letter.

	All	other	letters	are	lowercase.

The	following	variable	declarations	follow	these	naming	rules:
Button	loadFile;
int	localAreaCode;
boolean	quitGame;

Although	dollar	signs	and	underscores	are	permitted	in	variable	names,	you	should	avoid
using	either	of	them	except	in	one	situation:	When	a	variable’s	entire	name	is	capitalized,
each	word	is	separated	by	an	underscore.	Here’s	an	example:

static	int	DAYS_IN_WEEK	=	7;

You	will	see	why	a	variable	name	might	be	capitalized	like	this	later	today.

Dollar	signs	never	should	be	used	in	variable	names,	even	though	they’re	permitted.	The
official	documentation	for	Java	always	has	discouraged	their	use,	so	programmers	follow
this	convention.

Variable	Types
In	addition	to	a	name,	a	variable	declaration	must	include	the	data	type	of	information
being	stored.	The	type	can	be	any	of	the	following:

	One	of	the	primitive	data	types,	such	as	int	or	boolean

	The	name	of	a	class	or	interface

	An	array

You	learn	how	to	declare	and	use	array	variables	 .	Today’s	lesson	focuses	on	the
other	variable	types.

later

4

Data	Types

Java	has	eight	basic	data	types	that	store	integers,	floating-point	numbers,	characters,	and
Boolean	values.	These	often	are	called	primitive	types	because	they	are	built-in	parts	of
the	language	rather	than	objects,	which	makes	them	easier	to	create	and	use.	These	data
types	have	the	same	size	and	characteristics	no	matter	what	operating	system	and	platform
you’re	on,	unlike	some	data	types	in	other	programming	languages.

You	can	use	four	data	types	to	store	integers.	Which	one	you	use	depends	on	the	integer’s
size,	as	shown	in	Table	2.1.

TABLE	2.1	Integer	Types

All	these	types	are	signed,	which	means	that	they	can	hold	either	positive	or	negative
numbers.	The	type	used	for	a	variable	depends	on	the	range	of	values	it	might	need	to
hold.	None	of	these	integer	variables	can	reliably	store	a	value	that	is	too	large	or	too
small	for	its	designated	variable	type,	so	take	care	when	designating	the	type.

Another	type	of	number	that	can	be	stored	is	a	floating-point	number,	which	has	the	type
float	or	double.	Floating-point	numbers	are	numbers	with	a	decimal	point.	The
float	type	can	handle	any	number	from	1.4E-45	to	3.4E+38,	while	the	double
type	can	be	used	for	more	precise	numbers	ranging	from	4.9E-324	to	1.7E+308.
Because	double	has	more	precision,	that	type	generally	is	preferred.

The	char	type	is	used	for	individual	characters,	such	as	letters,	numbers,	punctuation,
and	other	symbols.

The	last	of	the	eight	primitive	data	types	is	boolean.	As	you	have	learned,	this	data	type
holds	either	true	or	false.

All	these	variable	types	appear	in	lowercase,	and	you	must	use	them	as	such	in	programs.
Some	classes	have	the	same	names	as	these	data	types,	but	with	different	capitalization,
such	as	Boolean	and	Double	These	are	created	and	referenced	differently	in	a	Java
program,	so	you	can’t	use	them	interchangeably	in	most	circumstances.	 Later 	you
will	see	how	to	use	these	special	classes.

Note

There’s	actually	a	ninth	primitive	data	type	in	Java,	void,	which	represents
nothing.	It’s	used	in	methods	to	indicate	that	they	do	not	return	a	value.

5

Class	Types

In	addition	to	the	primitive	data	types,	a	variable	can	have	a	class	as	its	type,	as	in	the
following	examples:

String	lastName	=	“Hopper”;
Color	hair;
MarsRobot	robbie;

When	a	variable	has	a	class	as	its	type,	the	variable	refers	to	an	object	of	that	class	or	one
of	its	subclasses.

The	last	statement	in	the	preceding	list	creates	a	variable	named	robbie	that	is	reserved
for	a	MarsRobot	object.	You	learn	more	 later about	how	to	associate	objects	with
variables.

Assigning	Values	to	Variables
After	a	variable	has	been	declared,	a	value	can	be	assigned	to	it	with	the	assignment
operator,	which	is	an	equal	sign	=.	The	following	are	examples	of	assignment	statements:

idCode	=	8675309;

accountOverdrawn	=	false;

Constants
Variables	are	useful	when	you	need	to	store	information	that	can	be	changed	as	a	program
runs.

If	the	value	never	should	change	during	a	program’s	runtime,	you	can	use	a	type	of
variable	called	a	constant.	A	constant	is	a	variable	with	a	value	that	never	changes.	(This
might	seem	like	an	oxymoron,	given	the	meaning	of	the	word	“variable.”)

Constants	are	useful	in	defining	shared	values	for	the	use	of	all	methods	of	an	object.	In
Java,	you	can	create	constants	for	all	kinds	of	variables:	instance,	class,	and	local.

To	declare	a	constant,	use	the	final	keyword	before	the	variable	declaration	and	include
an	initial	value	for	that	variable,	as	in	the	following:

final	double	PI	=	3.141592;
final	boolean	DEBUG	=	false;
final	int	PENALTY	=	25;

Constants	can	be	handy	for	naming	various	states	of	an	object	and	then	testing	for	those
states.	Suppose	you	have	a	program	that	takes	directional	input	from	the	numeric	keypad
on	the	keyboard—press	8	to	go	up,	4	to	go	left,	6	to	go	right,	and	2	to	go	down.	You	can
define	those	values	as	constant	integers:

final	int	LEFT	=	4;
final	int	RIGHT	=	6;
final	int	UP	=	8;
final	int	DOWN	=	2;

Constants	often	make	a	program	easier	to	understand.	To	illustrate	this	point,	consider
which	of	the	following	two	statements	is	more	informative	as	to	its	function:

guide.direction	=	4;

6

guide.direction	=	LEFT;

Note

In	the	preceding	statements,	the	names	of	the	constants	such	as	DEBUG	and	LEFT
are	capitalized.	This	is	a	convention	adopted	by	Java	programmers	to	make	it	clear
that	the	variable	is	a	constant.	Java	does	not	require	that	constants	be	capitalized	in
this	manner,	but	it’s	a	good	practice	to	adopt.

When	a	constant’s	variable	name	is	more	than	one	word,	putting	it	in	all	caps	would	make
the	words	run	together	confusingly,	as	in	ESCAPECODE.	Separate	the	words	with	an
underscore	character	_,	like	this:

final	int	ESCAPE_CODE	=	27;

Today’s	first	project	is	a	Java	application	that	creates	several	variables,	assigns	them	initial
values,	and	displays	two	of	them	as	output.	Run	NetBeans	and	create	a	new	Java	program
by	undertaking	these	steps:	: :

On	this	project,	you	specify	a	class	name	and	a	package	name.	Packages	are	a	way	to
organize	related	Java	programs	together.	They	serve	a	similar	purpose	to	file	folders	in	a
file	system.	Enter	the	code	shown	in	Listing	2.1	into	the	source	code	editor.

LISTING	2.1	The	Full	Text	of	Variables.java

	1:	package	variables;
	2:
	3:	public	class	Variables	{
	4:
	5:					public	static	void	main(String[]	arguments)	{
	6:									final	char	UP	=	‘U’;
	7:									byte	initialLevel	=	12;
	8:									short	location	=	13250;
	9:									int	score	=	3500100;
10:									boolean	newGame	=	true;
11:
12:									System.out.println(“Level:	“	+	initialLevel);
13:									System.out.println(“Up:	“	+	UP);
14:					}
15:

1. Choose the menu command File, New File. The New File dialog box opens.
2. In the Categories pane, choose Java.
3. In the File Types pane, choose Empty Java File and click Next. The Empty Java File
 dialog box opens.
4. In the Class Name text field, enter Variables, which will give the source code
 file the name Variables.java.
5. Here’s the different step: In the Package Name text field, enter
 com.java21days.
6. Click Finish.

7

Save	the	file	by	choosing	File,	Save.	NetBeans	automatically	compiles	the	application	if	it
contains	no	errors.	Run	the	program	by	choosing	Run,	Run	File.	This	program	produces
the	output	shown	in	Figure	2.1.

FIGURE	2.1	Creating	and	displaying	variable	values.

The	package	name	of	the	class	is	established	by	the	package	statement,	which	must	be
the	first	line	of	a	Java	program	when	it	is	used:

package	com.java21days;

This	class	uses	four	local	variables	and	one	constant,	making	use	of
System.out.println()	in	lines	12–13	to	produce	output.

System.out.println()	is	a	method	called	to	display	strings	and	other	information
to	the	standard	output	device,	which	usually	is	the	monitor.

This	method	takes	a	single	argument	within	its	parentheses:	a	string.	To	present	more	than
one	variable	or	literal	as	the	argument	to	println(),	the	+	operator	combines	the
elements	into	a	single	string.

Java	also	has	a	System.out.print()	method	that	displays	a	string	without
terminating	it	with	a	newline	character.	You	can	call	print()	instead	of	println()	to
display	several	strings	on	the	same	line.

Comments
One	of	the	most	effective	ways	to	improve	a	program’s	readability	is	to	use	comments.
These	are	text	included	in	a	program	that	explains	what’s	going	on	in	the	code.	The	Java
compiler	ignores	comments	when	preparing	a	bytecode	version	of	a	Java	source	file	that
can	be	run	as	a	class,	so	there’s	no	penalty	for	using	them.

You	can	use	three	kinds	of	comments	in	Java	programs.

A	single-line	comment	is	preceded	by	two	slash	characters	//.	Everything	from	the
slashes	to	the	end	of	the	line	is	considered	a	comment	and	is	disregarded	by	the	compiler,
as	in	the	following	statement:

int	creditHours	=	3;	//	set	up	credit	hours	for	course

Everything	from	the	slashes	onward	is	ignored.	As	far	as	the	compiler	is	concerned,	the
preceding	line	is	the	same	as	this:

int	creditHours	=	3;

8

A	multiline	comment	begins	with	/*	and	ends	with	*/.	Everything	between	these	two
delimiters	is	considered	a	comment,	even	over	multiple	lines,	as	in	the	following	code:

/*	This	program	occasionally	deletes	all	files	on
your	hard	drive	and	renders	it	unusable
forever	when	you	click	the	Save	button.	*/

A	Javadoc	comment	begins	with	/**	and	ends	with	*/.	Everything	between	these
delimiters	is	considered	to	be	official	documentation	on	how	the	class	and	its	methods
work.

Javadoc	comments	are	designed	to	be	read	by	utilities	such	as	javadoc,	a	command-line
tool	that’s	part	of	the	Java	Development	Kit	(JDK).	This	tool	uses	official	comments	to
create	a	set	of	web	pages	that	document	the	functionality	of	a	Java	class,	show	its	place	in
relation	to	its	superclass	and	subclasses,	and	describe	each	of	its	methods.

Tip

All	the	official	documentation	on	each	class	in	the	Java	Class	Library	is	generated
from	Javadoc	comments.	You	can	view	current	Java	documentation	at
http://docs.oracle.com/javase/8/docs/api.

Literals
In	addition	to	variables,	you	can	work	with	values	as	literals	in	a	Java	statement.	A	literal
is	any	number,	text,	or	other	information	that	directly	represents	a	value.

The	following	assignment	statement	uses	a	literal:
int	year	=	2016;

The	literal	2016	represents	the	integer	value	2016.	Numbers,	characters,	and	strings	are	all
examples	of	literals.	Java	has	types	of	literals	that	represent	different	kinds	of	numbers,
characters,	strings,	and	Boolean	values.

Number	Literals
Java	has	several	integer	literals.	The	number	4,	for	example,	is	an	integer	literal	of	the
int	variable	type.	It	also	can	be	assigned	to	byte	and	short	variables,	because	the
number	is	small	enough	to	fit	into	those	integer	types.	An	integer	literal	larger	than	an
int	can	hold	automatically	is	considered	to	be	of	the	type	long.	You	also	can	indicate
that	a	literal	should	be	a	long	integer	by	adding	the	letter	L	to	the	number	(either	in
upper-	or	lowercase).	Here’s	an	example:

pennyTotal	=	pennyTotal	+	4L;

This	statement	adds	the	value	4,	formatted	as	a	long,	to	the	current	value	of	the
pennyTotal	variable.

9

http://docs.oracle.com/javase/8/docs/api

To	represent	a	negative	number	as	a	literal,	precede	it	with	a	minus	sign	(–),	as	in	–45.

Floating-point	literals	use	a	period	character.	for	the	decimal	point,	as	you	would	expect.
The	following	statement	uses	a	literal	to	set	up	a	double	variable:

double	gpa	=	3.55;

All	floating-point	literals	are	considered	to	be	of	the	double	variable	type	instead	of
float.	To	specify	a	literal	of	float,	add	the	letter	F	to	the	literal	(upper-	or	lowercase),
as	in	the	following	example:

float	piValue	=	3.1415927F;

You	can	use	exponents	in	floating-point	literals	by	using	the	letter	e	or	E	followed	by	the
exponent,	which	can	be	a	negative	number.	The	following	statements	use	exponential
notation:

double	x	=	12e22;

double	y	=	19E-95;

A	large	integer	literal	can	include	an	underscore	character	_	to	make	it	more	readable	to
humans.	The	underscore	serves	the	same	purpose	as	a	comma	in	a	large	number,	making
its	value	more	apparent.	Consider	these	two	examples,	one	of	which	uses	underscores:

int	jackpot	=	3500000;

int	jackpot	=	3_500_000;

Both	examples	equal	3,500,000,	which	is	easier	to	see	in	the	second	statement.	The	Java
compiler	ignores	the	underscores.

Java	also	supports	numeric	literals	that	use	binary,	octal,	and	hexadecimal	numbering.

Binary	numbers	are	a	base-2	numbering	system	in	which	only	the	values	0	and	1	are	used.
Values	made	up	of	1s	and	0s	are	the	simplest	form	for	a	computer	and	are	a	fundamental
part	of	computing.	Counting	up	from	0,	binary	values	are	0,	1,	10,	11,	100,	111,	and	so	on.
Each	digit	in	the	number	is	called	a	bit.	The	combination	of	eight	numbers	is	a	byte.	A
binary	literal	is	specified	by	preceding	it	with	0b,	as	in	0b101	for	101	(5	in	decimal)	and
0b01111111	(127).

Octal	numbers	are	a	base-8	numbering	system,	which	means	that	they	can	represent	only
the	values	0	through	7	as	a	single	digit.	The	eighth	number	in	octal	is	10.	Octal	literals
begin	with	a	0,	so	010	is	the	decimal	value	8,	012	is	9,	and	020	is	16.

Hexadecimal	is	a	base-16	numbering	system	that	can	represent	16	numbers	as	a	single
digit.	The	letters	A	through	F	represent	the	last	six	digits,	so	the	first	16	numbers	are	0,	1,
2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	and	F.	Hexademical	literals	begin	with	0x,	as	on	0x12
(decimal	18)	and	0xFF	(255).

The	octal	and	hexadecimal	systems	are	better	suited	for	certain	tasks	in	programming	than
the	normal	decimal	system.	If	you	ever	have	edited	a	web	page	to	set	its	background	color,
you	could	have	used	hexadecimal	numbers	for	green	(0x001100),	blue	(0x000011),	or
butterscotch	(0xFFCC99).

10

Boolean	Literals
The	Boolean	literals	true	and	false	are	the	only	two	values	you	can	use	when
assigning	a	value	to	a	boolean	variable	type	or	using	a	Boolean	in	a	statement.

The	following	statement	sets	a	boolean	variable:
boolean	chosen	=	true;

Caution

If	you	have	programmed	in	other	languages,	you	might	expect	that	a	value	of	1	is
equivalent	to	true	and	0	is	equivalent	to	false.	This	isn’t	the	case	in	Java;	you	must
use	the	values	true	and	false	to	represent	Boolean	values.

Note	that	the	literal	true	does	not	have	quotation	marks	around	it.	If	it	did,	the	Java
compiler	would	assume	that	it	is	a	string	of	characters.

Character	Literals
Character	literals	are	expressed	by	a	single	character	surrounded	by	single	quotation
marks,	such	as	‘a’,	‘#’,	and	‘3’.	You	might	be	familiar	with	the	ASCII	character	set,	which
includes	128	characters,	including	letters,	numerals,	punctuation,	and	other	characters
useful	in	computing.	Java	supports	ASCII	along	with	thousands	of	additional	characters
through	the	16-bit	Unicode	standard.

Some	character	literals	represent	characters	that	are	not	readily	printable	or	accessible
from	a	keyboard.	Table	2.2	lists	the	codes	that	can	represent	these	special	characters	as
well	as	characters	from	the	Unicode	character	set.

TABLE	2.2	Character	Escape	Codes

In	Table	2.2,	the	letter	d	in	the	octal,	hex,	and	Unicode	escape	codes	represents	a	number

11

or	a	hexadecimal	digit	(a	through	f	or	A	through	F).

String	Literals
The	final	literal	that	you	can	use	in	a	Java	program	represents	strings	of	characters.	A
string	in	Java	is	an	object	rather	than	a	primitive	data	type.	Strings	are	not	stored	in	arrays
as	they	are	in	languages	such	as	C.

Because	string	objects	are	real	objects	in	Java,	methods	are	available	to	combine	strings,
modify	strings,	and	determine	whether	two	strings	have	the	same	value.

String	literals	consist	of	a	series	of	characters	inside	double	quotation	marks,	as	in	the
following	statements:

String	quitMsg	=	“Are	you	sure	you	want	to	quit?”;

String	password	=	“drowssap”;

Strings	can	include	the	character	escape	codes	listed	in	Table	2.2,	as	shown	here:

String	example	=	“Socrates	asked,	"Hemlock	is	poison?"”;

System.out.println(“Sincerely,\nMillard	Fillmore\n”);

String	title	=	“Sams	Teach	Yourself	Node	in	the	John\u2122”;

In	the	last	example,	the	Unicode	code	sequence	\u2122	produces	a	™	symbol	on
systems	that	have	been	configured	to	support	Unicode.

Caution

Although	Java	supports	the	transmission	of	Unicode	characters,	a	computer	also
must	support	it	for	the	characters	to	be	displayed	when	the	program	is	run.	Unicode
support	provides	a	way	to	encode	its	characters	for	systems	that	support	the
standard.	Java	supports	the	display	of	any	Unicode	character	that	can	be	represented
by	a	host	font.

For	more	information	about	Unicode,	visit	the	Unicode	Consortium	website	at
www.unicode.org.

Although	string	literals	are	used	in	a	manner	similar	to	other	literals	in	a	program,	they	are
handled	differently	behind	the	scenes.

With	a	string	literal,	Java	stores	that	value	as	a	String	object.	You	don’t	have	to
explicitly	create	a	new	object,	as	you	must	when	working	with	other	objects,	so	they	are	as
easy	to	work	with	as	primitive	data	types.	Strings	are	unusual	in	this	respect—none	of	the
basic	types	are	stored	as	an	object	when	used.	You’ll	learn	more	about	strings	and	the
String	class	later	.

12

http://www.unicode.org

Expressions	and	Operators
An	expression	is	a	statement	that	can	convey	a	value.	Some	of	the	most	common
expressions	are	mathematical,	such	as	in	the	following	examples:

int	x	=	3;
int	y	=	x;
int	z	=	x	*	y;

All	three	of	these	statements	can	be	considered	expressions;	they	convey	values	that	can
be	assigned	to	variables.	The	first	assigns	the	literal	3	to	the	variable	x.	The	second
assigns	the	value	of	the	variable	x	to	the	variable	y.	In	the	third	expression,	the
multiplication	operator	*	is	used	to	multiply	the	x	and	y	integers,	and	the	result	is	stored
in	the	z	integer.

Expressions	can	be	any	combination	of	variables,	literals,	and	operators.	They	also	can	be
method	calls	because	methods	send	back	a	value	to	the	object	or	class	that	called	the
method.

The	value	conveyed	by	an	expression	is	called	a	return	value.	This	value	can	be	assigned
to	a	variable	and	used	in	many	other	ways	in	your	Java	programs.

Most	of	the	expressions	in	Java	use	operators	such	as	*.	Operators	are	special	symbols
used	for	mathematical	functions,	assignment	statements,	and	logical	comparisons.

Arithmetic
Five	operators	are	used	to	accomplish	basic	arithmetic	in	Java,	as	shown	in	Table	2.3.

TABLE	2.3	Arithmetic	Operators

Each	operator	takes	two	operands,	one	on	each	side	of	the	operator.	The	subtraction
operator	also	can	be	used	to	negate	a	single	operand,	which	is	equivalent	to	multiplying
that	operand	by	–1.

One	thing	to	be	mindful	of	when	performing	division	is	the	type	of	numbers	being	used.	If
you	store	a	division	operation	in	an	integer,	the	result	is	truncated	to	the	next-lower	whole
number,	because	the	int	data	type	can’t	handle	floating-point	numbers.

For	example,	the	expression	31	/	9	results	in	3	if	stored	as	an	integer.

Modulus	division,	which	uses	the	%	operator,	produces	the	remainder	of	a	division
operation.	The	expression	31	%	9	results	in	4	because	31	divided	by	9,	with	the	whole
number	result	of	3,	leaves	a	remainder	of	4.

13

Note	that	many	arithmetic	operations	involving	integers	produce	an	int	regardless	of	the
original	type	of	the	operands.	If	you’re	working	with	other	numbers,	such	as	floating-point
numbers	or	long	integers,	you	should	make	sure	that	the	operands	have	the	same	type
you’re	trying	to	end	up	with.

The	next	project	is	a	Java	class	that	demonstrates	how	to	perform	simple	arithmetic	in	the
language.	Create	a	new	empty	Java	file	in	NetBeans	called	Weather	in	the
com.java21days	package	and	enter	the	code	shown	in	Listing	2.2	into	the	source	code
editor.	Save	the	file	with	the	menu	command	File,	Save	when	you’re	done.

LISTING	2.2	The	Full	Text	of	Weather.java

	1:	package	com.java21days;
	2:
	3:	public	class	Weather	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									float	fah	=	86;
	6:									System.out.println(fah	+	”	degrees	Fahrenheit	is	…”);
	7:									//	To	convert	Fahrenheit	into	Celsius
	8:									//	begin	by	subtracting	32
	9:									fah	=	fah	-	32;
10:									//	Divide	the	answer	by	9
11:									fah	=	fah	/	9;
12:									//	Multiply	that	answer	by	5
13:									fah	=	fah	*	5;
14:									System.out.println(fah	+	”	degrees	Celsius\n”);
15:
16:									float	cel	=	33;
17:									System.out.println(cel	+	”	degrees	Celsius	is	…”);
18:									//	To	convert	Celsius	into	Fahrenheit
19:									//	begin	by	multiplying	by	9
20:									cel	=	cel	*	9;
21:									//	Divide	the	answer	by	5
22:									cel	=	cel	/	5;
23:									//	Add	32	to	the	answer
24:									cel	=	cel	+	32;
25:									System.out.println(cel	+	”	degrees	Fahrenheit”);
26:					}
27:	}

Run	the	program	by	selecting	Run,	Run	File.	It	produces	the	output	shown	in	Figure	2.2.

FIGURE	2.2	Converting	temperatures	with	expressions.

14

In	lines	5–14	of	this	Java	application,	a	temperature	in	Fahrenheit	is	converted	to	Celsius
using	the	arithmetic	operators:

	Line	5—The	floating-point	variable	fah	is	created	with	a	value	of	86.

	Line	6—The	current	value	of	fah	is	displayed.

	Line	7—The	first	of	several	comments	explains	what	the	program	is	doing.	The
Java	compiler	ignores	these	comments.

	Line	9—fah	is	set	to	its	current	value	minus	32.

	Line	11—fah	is	set	to	its	current	value	divided	by	9.

	Line	13—fah	is	set	to	its	current	value	multiplied	by	5.

	Line	14—Now	that	fah	has	been	converted	to	a	Celsius	value,	fah	is	displayed
again.

A	similar	thing	happens	in	lines	16–25,	but	in	the	reverse	direction.	A	temperature	in
Celsius	is	converted	to	Fahrenheit.

More	About	Assignment
Assigning	a	value	to	a	variable	is	an	expression	because	it	produces	a	value.	Because	of
this	feature,	you	can	combine	assignment	statements	in	this	unusual	way:

x	=	y	=	z	=	7;

In	this	statement,	all	three	variables	x,	y,	and	z	end	up	with	the	value	7.

The	right	side	of	an	assignment	expression	always	is	calculated	before	the	assignment
takes	place.	This	makes	it	possible	to	use	an	expression	statement	as	in	the	following
code:

int	x	=	5;
x	=	x	+	2;

In	the	expression	x	=	x	+	2,	the	first	thing	that	happens	is	that	x	+	2	is	calculated.
The	result	of	this	calculation,	7,	is	then	assigned	to	x.

Using	an	expression	to	change	a	variable’s	value	is	a	common	task	in	programming.
Several	operators	are	used	strictly	in	these	cases.

Table	2.4	shows	these	assignment	operators	and	the	expressions	they	are	functionally
equivalent	to.

TABLE	2.4	Assignment	Operators

15

Caution

These	shorthand	assignment	operators	are	functionally	equivalent	to	the	longer
assignment	statements	for	which	they	substitute.	If	either	side	of	your	assignment
statement	is	part	of	a	complex	expression,	however,	there	are	cases	where	the
operators	are	not	equivalent.	For	example,	if	x	equals	20	and	y	equals	5,	the
following	two	statements	do	not	produce	the	same	value:

x	=	x	/	y	+	5;
x	/=	y	+	5;

The	first	statement	produces	an	x	value	of	9	and	the	second	an	x	value	of	2.	When
in	doubt	about	what	an	expression	is	doing,	simplify	it	by	using	multiple
assignment	statements	and	don’t	use	the	shorthand	operators.

Incrementing	and	Decrementing
Another	common	task	required	in	programming	is	to	add	or	subtract	1	from	an	integer
variable.	These	expressions	have	special	operators,	which	are	called	increment	and
decrement	operators.	Incrementing	a	variable	means	adding	1	to	its	value,	and
decrementing	a	variable	means	subtracting	1	from	its	value.

The	increment	operator	is	++,	and	the	decrement	operator	is	--.	These	operators	are
placed	immediately	after	or	before	a	variable	name,	as	in	the	following	code:

int	x	=	7;
x++;

In	this	example,	the	statement	x++	increments	the	x	variable	from	7	to	8.

These	increment	and	decrement	operators	can	be	placed	before	or	after	a	variable	name.
This	affects	the	value	of	expressions	that	involve	these	operators.

Increment	and	decrement	operators	are	called	prefix	operators	if	listed	before	a	variable
name	and	postfix	operators	if	listed	after	a	name.

In	a	simple	expression	such	as	count--;,	using	a	prefix	or	postfix	operator	produces	the
same	result,	making	the	operators	interchangeable.	When	increment	and	decrement
operations	are	part	of	a	larger	expression,	however,	the	choice	between	prefix	and	postfix
operators	is	important.

Consider	the	following	code:
int	x,	y,	z;
x	=	42;
y	=	x++;
z	=	++x;

The	three	expressions	in	this	code	yield	different	results	because	of	the	difference	between
prefix	and	postfix	operations.

When	you	use	postfix	operators	on	a	variable	in	an	expression,	the	variable’s	value	is
evaluated	in	the	expression	before	it	is	incremented	or	decremented.	So	in	y	=	x++,	y
receives	the	value	of	x	before	it	is	incremented	by	1.

16

When	using	prefix	operators	on	a	variable	in	an	expression,	the	variable	is	incremented	or
decremented	before	its	value	is	evaluated	in	that	expression.	Therefore,	in	z	=	++x,	x	is
incremented	by	1	before	the	value	is	assigned	to	z.

The	end	result	of	the	preceding	codes	example	is	that	y	equals	42,	z	equals	44,	and	x
equals	44.

If	you’re	still	having	some	trouble	figuring	this	out,	here’s	the	example	again	with
comments	describing	each	step:

int	x,	y,	z;	//	x,	y,	and	z	are	declared
x	=	42;						//	x	is	given	the	value	42
y	=	x++;					//	y	is	given	x’s	value	(42)	before	it	is	incremented
													//	and	x	is	then	incremented	to	43
z	=	++x;					//	x	is	incremented	to	44,	and	z	is	given	x’s	value

Caution

Using	increment	and	decrement	operators	in	complex	expressions	can	produce
results	you	might	not	expect.

The	concept	of	“assigning	x	to	y	before	x	is	incremented”	isn’t	precisely	right,
because	Java	evaluates	everything	on	the	right	side	of	an	expression	before
assigning	its	value	to	the	left	side.

Java	stores	some	values	before	handling	an	expression	to	make	postfix	work	the
way	it	has	been	described	in	this	section.

If	you’re	not	getting	the	results	you	expect	from	a	complex	expression	that	includes
prefix	and	postfix	operators,	try	breaking	the	expression	into	multiple	statements	to
simplify	it.

Comparisons
Java	has	several	operators	for	making	comparisons	among	variables,	variables	and	literals,
or	other	types	of	information	in	a	program.

These	operators	are	used	in	expressions	that	return	Boolean	values	of	true	or	false,
depending	on	whether	the	comparison	being	made	is	true	or	not.	Table	2.5	shows	the
comparison	operators.

17

TABLE	2.5	Comparison	Operators

The	following	example	shows	a	comparison	operator	in	use:
boolean	isHip;
int	age	=	37;
isHip	=	age	<	25;

The	expression	age	<	25	produces	a	result	of	either	true	or	false,	depending	on	the
value	of	the	integer	age.	Because	age	is	37	in	this	example	(which	is	not	less	than	25),
isHip	is	given	the	Boolean	value	false.

Logical	Operators
Expressions	that	result	in	Boolean	values,	such	as	comparison	operations,	can	be
combined	to	form	more	complex	expressions.	This	is	handled	through	logical	operators,
which	are	used	for	the	logical	combinations	AND,	OR,	XOR,	and	logical	NOT.

For	AND	combinations,	the	&	or	&&	logical	operator	is	used.	When	two	Boolean
expressions	are	linked	by	these	operators,	the	combined	expression	returns	a	true	value
only	if	both	Boolean	expressions	are	true.

Consider	this	example:

boolean	extraLife	=	(score	>	75000)	&	(playerLives	<	10);

This	expression	combines	two	comparison	expressions:	score	>	75000	and
playerLives	<	10.	If	both	expressions	are	true,	the	Boolean	value	true	is	assigned
to	the	variable	extraLife.	In	any	other	circumstance,	the	value	false	is	assigned	to
the	variable.

The	difference	between	&	and	&&	lies	in	how	much	work	Java	does	on	the	combined
expression.	If	&	is	used,	the	expressions	on	both	sides	of	the	&	are	evaluated	no	matter
what.	If	&&	is	used	and	the	left	side	of	the	&&	is	false,	the	expression	on	the	right	side	of
the	&&	never	is	evaluated.

This	makes	&&	more	efficient	because	no	unnecessary	work	is	performed.	In	the	preceding
example	if	score	is	not	greater	than	75,000,	there’s	no	need	to	consider	whether
playerLives	is	less	than	10.

For	OR	combinations,	the	|	or	||	logical	operator	is	used.	These	combined	expressions

18

return	a	true	value	if	either	Boolean	expression	is	true.

Consider	this	example:

boolean	extralife	=	(score	>	75000)	||	(playerLevel	==	0);

This	expression	combines	two	comparison	expressions:	score	>	75000	and
playerLevel	==	0.	If	either	of	these	expressions	is	true,	the	Boolean	value	true	is
assigned	to	the	variable	extraLife.	Only	if	both	of	these	expressions	are	false	is	the
value	false	assigned	to	extraLife.

Note	the	use	of	||	instead	of	|.	Because	of	this	usage,	if	score	>	75000	is	true,
extraLife	is	set	to	true,	and	the	second	expression	never	is	evaluated.

The	XOR	combination	has	one	logical	operator,	^.	This	results	in	a	true	value	only	if	the
Boolean	expressions	it	combines	have	opposite	values.	If	both	are	true	or	both	are	false,
the	^	operator	produces	a	false	value.

The	NOT	combination	uses	the	!	logical	operator	followed	by	a	single	expression.	It
reverses	the	value	of	a	Boolean	expression	in	the	same	way	that	a	minus	sign	reverses	the
positive	or	negative	sign	on	a	number.	For	example,	if	age	<	25	returns	a	true	value,
!(age	<	25)	returns	a	false	value.

The	logical	operators	may	seem	illogical	when	you	first	encounter	them.	You	get	plenty	of
opportunities	to	work	with	them	during	the nextlectures.	

Operator	Precedence
When	more	than	one	operator	is	used	in	an	expression,	Java	has	an	established	precedence
hierarchy	to	determine	the	order	in	which	operators	are	evaluated.	In	many	cases,	this
precedence	determines	the	expression’s	overall	value.

For	example,	consider	the	following	expression:
y	=	6	+	4	/	2;

The	y	variable	will	equal	the	value	5	or	the	value	8,	depending	on	which	arithmetic
operation	is	handled	first.	If	the	6	+	4	expression	comes	first,	y	has	the	value	of	5.
Otherwise,	y	equals	8.

In	general,	the	order	of	evaluation	from	first	to	last	is	as	follows:

1.	Increment	and	decrement	operations

2.	Arithmetic	operations

3.	Comparisons

4.	Logical	operations

5.	Assignment	expressions

If	two	operations	have	the	same	precedence,	the	one	on	the	left	in	the	expression	is

19

handled	before	the	one	on	the	right.	Table	2.6	shows	the	specific	precedence	of	the	various
operators	in	Java.	Operators	higher	up	in	the	table	are	evaluated	first.

TABLE	2.6	Operator	Precedence

Several	of	the	operators	listed	in	Table	2.6	are	covered	later.	

Returning	to	the	expression	y	=	6	+	4	/	2,	Table	2.6	shows	that	division	is	evaluated
before	addition,	so	the	value	of	y	equals	8.

To	change	the	order	in	which	expressions	are	evaluated,	place	parentheses	around	the
expressions	that	should	be	evaluated	first.	You	can	nest	one	set	of	parentheses	inside
another	to	make	sure	that	expressions	are	evaluated	in	the	desired	order;	the	innermost
parenthetic	expression	is	evaluated	first.

The	following	expression	results	in	a	value	of	5:
y	=	(6	+	4)	/	2

The	value	of	5	is	the	result	because	6	+	4	is	calculated	first,	and	then	the	result,	10,	is
divided	by	2.

20

Parentheses	also	can	improve	an	expression’s	readability.	If	an	expression’s	precedence
isn’t	immediately	clear	to	you,	adding	parentheses	to	impose	the	desired	precedence	can
make	the	statement	easier	to	understand.

String	Arithmetic
As	stated	earlier,	the	+	operator	has	a	double	life	outside	the	world	of	mathematics.	It	can
concatenate	two	or	more	strings.

The	word	“concatenate”	means	to	link	two	things.	For	reasons	unknown,	it	is	the	verb	of
choice	in	computer	programming	when	describing	the	act	of	combining	two	strings,
winning	out	over	paste,	glue,	affix,	combine,	link,	smush	together,	and	conjoin.

In	several	examples,	you	have	seen	statements	that	look	something	like	this:

String	brand	=	“Jif”;
System.out.println(“Choosy	mothers	choose	“	+	brand);

These	two	lines	result	in	the	display	of	the	following	text:
Choosy	mothers	choose	Jif

The	+	operator	combines	strings,	other	objects,	and	variables	to	form	a	single	string.	In	the
preceding	example,	the	literal	“Choosy	mothers	choose”	is	concatenated	to	the	value	of
the	String	object	brand.

Working	with	the	concatenation	operator	is	made	easier	in	Java	by	the	fact	that	the
operator	can	handle	any	variable	type	and	object	value	as	if	it	were	a	string.	If	any	part	of
a	concatenation	operation	is	a	String	or	a	string	literal,	all	elements	of	the	operation	are
treated	as	if	they	were	strings:

System.out.println(4	+	”	score	and	“	+	7	+	”	years	ago”);

This	produces	the	output	text	“4	score	and	7	years	ago”,	as	if	the	integer	literals	4	and	7
were	strings.

There	also	is	a	+=	shorthand	operator	to	append	something	to	the	end	of	a	string.	For
example,	consider	the	following	expression:

myName	+=	”	Jr.”;

This	expression	is	equivalent	to	the	following:
myName	=	myName	+	”	Jr.”;

In	this	example,	+=	changes	the	value	of	myName,	which	might	be	something	like
“Robert	Downey,”	by	adding	“Jr.”	at	the	end	to	form	the	string	“Robert	Downey	Jr.”

To	summarize	today’s	material,	Table	2.7	lists	the	operators	you	have	learned	about.	Be	a
doll	and	look	them	over	carefully.

21

TABLE	2.7	Operator	Summary

Summary
Anyone	who	pops	open	a	set	of	matryoshka	dolls	has	to	be	a	bit	disappointed	upon
reaching	the	smallest	doll	in	the	group.

Today	you	reached	Java’s	smallest	nesting	doll.	Using	statements	and	expressions	enables
you	to	begin	building	effective	methods,	which	makes	effective	objects	and	classes
possible.

22

Today	you	learned	about	creating	variables	and	assigning	values	to	them.	You	also	used
literals	to	represent	numeric,	character,	and	string	values	and	worked	with	operators.
Later ,	you’ll	put	these	skills	to	use	developing	classes.

Q&A
Q	What	happens	if	I	assign	an	integer	value	to	a	variable	that	is	too	large	for	that
variable	to	hold?

A	Logically,	you	might	think	that	the	variable	is	converted	to	the	next-larger	type,	but
this	isn’t	what	happens.	Instead,	an	overflow	occurs—a	situation	in	which	the
number	wraps	around	from	one	size	extreme	to	the	other.	An	example	of	overflow
would	be	a	byte	variable	that	goes	from	127	(an	acceptable	value)	to	128
(unacceptable).	It	would	wrap	around	to	the	lowest	acceptable	value,	which	is	–128,
and	start	counting	upward	from	there.	Overflow	isn’t	something	you	can	readily
detect	in	a	program,	so	be	sure	to	give	your	numeric	variables	plenty	of	living	space
in	their	chosen	data	type.

Small	data	types	like	byte	were	more	necessary	when	computers	had	much	less
memory	than	they	do	today	and	every	byte	counted.	Today,	with	plentiful	memory
and	hard	disk	space	measured	in	terabytes,	it	is	better	to	use	larger	data	types	like
int	to	ensure	that	you	have	enough	space	to	store	all	possible	values	in	a	particular
variable.

Q	Why	does	Java	have	all	these	shorthand	operators	for	arithmetic	and
assignment?	It’s	really	hard	to	read	that	way.

A	Java’s	syntax	is	based	on	C++,	which	is	based	on	C	(more	Russian	nesting	doll
behavior).	C	is	an	expert	language	that	values	programming	power	over	readability,
and	the	shorthand	operators	are	one	of	the	legacies	of	that	design	priority.	Using
them	in	a	program	isn’t	required	because	effective	substitutes	are	available,	so	you
can	avoid	them	in	your	own	programming	if	you	prefer.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

23

Questions
1.	Which	of	the	following	is	a	valid	value	for	a	boolean	variable?

A.	“false”

B.	false

C.	10

2.	Which	of	these	is	NOT	a	convention	for	naming	variables	in	Java?

A.	After	the	first	word	in	the	variable	name,	each	successive	word	begins	with	a
capital	letter.

B.	The	first	letter	of	the	variable	name	is	lowercase.

C.	All	letters	are	capitalized.

3.	Which	of	these	data	types	holds	numbers	from	–32,768	to	32,767?

A.	char

B.	byte

C.	short

Quiz
Review today’s material by taking this three-question quiz.
Questions
1. Which of the following is a valid value for a boolean variable?
 A. “false”
 B. false
 C. 10
2. Which of these is NOT a convention for naming variables in Java?
 A. After the first word in the variable name, each successive word begins with a
 capital letter.
 B. The first letter of the variable name is lowercase.
 C. All letters are capitalized.
3. Which of these data types holds numbers from –32,768 to 32,767?
 A. char
 B. byte
 C. short

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:
1. Create a program that calculates how much a $14,000 investment would be worth if
 it increased in value by 40% during the first year, lost $1,500 in value the second
 year, and increased 12% in the third year.
2. Write a program that displays two numbers and uses the / and % operators to
 display the result and remainder after they are divided. Use the \t character escape
 code to make a tab character separate the result and remainder in your output.

24

http://www.java21days.com

	Week I: The Java Language
	Day 2. The ABCs of Programming
	Statements and Expressions
	Variables and Data Types
	Creating Variables
	Naming Variables
	Variable Types
	Assigning Values to Variables
	Constants

	Comments
	Literals
	Number Literals
	Boolean Literals
	Character Literals
	String Literals

	Expressions and Operators
	Arithmetic
	More About Assignment
	Incrementing and Decrementing
	Comparisons
	Logical Operators
	Operator Precedence

	String Arithmetic
	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

